开发了氢胆管,以满足高峰值开关的战时需求,该开关可能会重复地放电脉冲形成线的电容器中存储的能量。星状肌thy肌已经从这种遗产应用中演变为强大的金属陶瓷设备的广泛产品线。峰值阳极电压为100 kV,峰值阳极电流至20 ka,并且可以实现每秒几千脉冲的重复速率。在其概念上模拟的形式中,Thyratron是一个三个元素,该元素是密封的三个元素,其中包含热离子(热)阴极,触发网格,阳极和氢气。白炽阴极通过连接到6.3伏电源的钨丝保持在工作温度下。氢(或氘)气体被用作开关介质。
在两个平行板之间NS脉冲分解期间的抽象电离波发育中,通过PS电场诱导的第二次谐波(EFISH)生成和动力学建模研究了介电覆盖的电极。结果表明在放电间隙中形成了两个定义明确的电离波,这需要相对较高的初始电子密度。第一个,阳极定向的波是通过施加的电压脉冲“扫地”初始电子产生的。第二波源于阴极和第一波前部之间,由于该区域的场增强,产生了两个波前方,朝相反的方向传播并在等离子体发射图像中观察到。仅通过efish测量值检测到第二波的阳极定向前部,这很可能是由于阴极定向前部靠近壁。测量和建模预测都表现出由第二波的阳极定向前面引起的间隙中心的瞬态电场。在第一个波和第二波后面形成的等离子体域之间的边界,在等离子体发射图像中观察到,通过EFISH测量值检测到,并通过建模计算进行了预测。模型在放电脉冲结束时预测的电子密度和耦合的能量分布几乎是统一的,除了在阴极 - 粘合壁附近,在该壁附近,该模型的适用性尚不确定,并且无法访问Efish测量值。
可充电电池的行业标准诊断方法,例如混合动力汽车的混合脉冲功率表征(HPPC)测试,提供了一些健康状况(SOH)的迹象,但缺乏指导协议设计并确定降级机制的物理基础。我们为HPPC测试开发了基于物理学的理论框架,该框架能够准确确定多孔电极模拟中电池降解的特定机制。我们表明,电压脉冲通常比电流脉冲更可取,因为电压分辨线性化更快地量化了降低而无需牺牲精度或在测量过程中允许态度的显着变化。此外,从电极动力学尺度的差异中发现了电荷 /放电脉冲之间的不对称信息增益。我们演示了使用富含镍的阴极和石墨阳极的模拟锂离子电池上的物理信息的HPPC方法。通过物理知识的HPPC进行多变量优化,可以迅速确定与阳极处降解现象相关的动力学参数,例如固体电解质相间相(SEI)生长(SEI)生长和锂板,以及在阴极中,例如氧化诱导的阳离子疾病。如果通过实验验证了HPPC测试的标准电压协议,则可以通过为电池降解的可解释的机器学习提供新的电化学特征来加快电池SOH评估和加速材料设计的关键作用。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad4394]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。