设计 LogiTouch 系统时: - 务必设计 LogiTouch 控制系统,以便在发生主电源故障或 LogiTouch 事故时,该系统的整体安全完整性能够得到维护。如果不这样做,错误的输出信号或 LogiTouch 故障可能会导致事故。(1) 联锁电路等设计用于中断或阻止正常机器运动(即紧急停止、一般保护、正向和反向旋转等),以及那些设计用于防止机器损坏(即用于上、下和横向移动极限定位等)都应设计为位于 LogiTouch 之外。(2) 每当 LogiTouch 生成“看门狗定时器错误”时,LogiTouch 操作将停止。此外,当 LogiTouch 无法检测到的输入/输出控制区域发生错误时,可能会发生意外的设备操作。因此,为了防止不安全或意外的设备操作,应该创建一个完全在 LogiTouch 外部的“故障安全电路”。(3) 如果外部单元的继电器或晶体管发生故障,导致输出(线圈)保持开启或关闭状态,则可能会发生重大事故。为防止这种情况,请务必设置外部看门狗电路来监控重要的输出信号。- 在启动 LogiTouch 之前,请务必设计一个为 LogiTouch 的 I/O 单元供电的电路。如果 LogiTouch 的内部程序在 I/O 单元的负载控制电源打开之前进入 RUN 模式,则错误的输出(信号)或故障可能会导致事故发生。- 务必设计一个程序,以防 LogiTouch 显示器或控制单元发生故障,或者 LogiTouch 与任何连接单元之间发生数据传输错误或电源故障时确保系统的安全。这些类型的问题可能会导致错误的输出(信号)或故障,从而可能导致事故发生。- 请勿创建可能危及人身或设备安全的触摸面板开关。这是因为 LogiTouch 或其电缆可能出现故障,导致输出可能导致重大事故的信号。系统的所有主要安全相关开关都应指定为与 LogiTouch 分开操作。- 确保设计您的系统,以便设备不会因 LogiTouch 与其主机控制器之间的通信故障而发生故障。这是为了防止任何可能发生的人身伤害或物质损失。- 请勿将 LogiTouch 与飞机控制装置或医疗生命支持设备、中央干线数据传输(通信)设备、核电控制装置或医疗生命支持设备一起使用,因为这些设备固有要求极高的安全性和可靠性。- 将 LogiTouch 与运输车辆(火车、汽车和轮船)、灾难和犯罪预防设备、各种安全设备、非生命支持相关医疗设备等一起使用时。务必使用冗余和/或故障安全系统设计,确保适当的可靠性和安全性。
• 高性能,符合 RS-485 EIA/TIA-485 标准 数据速率高达 0.5Mbps 1/8 单位负载可使总线上最多 256 个节点 3.0V 至 5.5V DC-DC 电源电压范围 (VDDP) 2.5V 至 5.5V RS-485 电源输入 (VDDL) • 用于电缆侧电源的集成 DC-DC 转换器 3.3V 和 5V 输出选项 与内部变压器的高度集成 软启动可降低输入浪涌电流 过载和短路保护 热关断 • 数字信号的强大电流隔离 2.5kV RMS 耐受隔离电压 60 秒(电流隔离) ±150kV/μs 典型 CMTI 长寿命:>40 年 • 集成保护以实现稳健通信 ±8kV 人体模型 (HBM) ESD总线 I/O 保护 真正的故障安全保证已知的接收器输出状态 驱动器电流限制和热关断 • 宽工作温度范围:-40°C 至 125°C • LGA16 封装 • 安全监管批准(待定) 3535V PK V IOTM 和 566V PK V IORM 符合 DIN VDE V0884-11:2017-01 2.5kV RMS 隔离,持续 1 分钟,符合 UL 1577
• TOKU 高品质叶片电机和行星齿轮箱,配备长寿命润滑脂 • 负载限制器 • 高强度铸钢外壳,经久耐用 • 结构紧凑、重量轻,易于操作 • 延长工作周期和频繁反转 • 可变速度,可准确升降 • 带安全锁的合金钢钩(底部钩配有推力轴承,操作方便) • 可调节负载限制器(不适用于 TMM、TCR Mini 或 TCS) • 故障安全自动盘式制动器(全封闭)确保断电时负载不会掉落 • 紧急停止 • 机械上限和下限提升限位 • 提升高度可满足您的需求 • 可选择绳索、吊坠控制或控制系统 • 噪音低至 80 dB(消音器和过滤器易于更换) • 空气消耗低(TCR 和 TMH 型号) • 气压从 0.4 到 0.63 MPa • 在恶劣环境下耐用 • 维护成本低 • 在适当条件下易于获得备件 • 提升机机身在日本制造,其他所有部件在欧洲制造 • 欧洲/日本制造的高品质校准负载链具有 5:1 FOS • 高速(TCS 和 TMH 型号) • 特殊设计的起重机和小车 • 符合 EC 指令 2014/34/EU 的 Ex 分类 (ATEX
Altronix AL1024NKA8DQM将115VAC 60Hz输入转换为八(8)个PTC保护功率 - 有限的输出。输出可单独选择,可提供12VDC或5VDC,最大为6A和/或24VDC,最大可用于访问控制面板,门锁和辅助偏差,最高为10A(240W总功率)。功率输出可以转换为干燥的“ C”触点。输出被开放的收集器接收器(通常打开(NO),通常关闭(NC)干燥触发器输入或访问控制系统,读取器,键盘,键盘,按钮,PIR等的湿输出。AL1024NKA8DQM将将电源路由到各种访问控制硬件设备,包括磁锁,电动罢工,磁性门架等。输出将以故障安全和/或故障安全模式运行。FACP接口启用紧急出口,警报监视或可能用于触发其他辅助设备。火灾警报断开功能均可单独选择八(8)个输出中的任何一个或全部。Spade连接器允许您获得多个Linq8acm(CB)模块的雏菊链功率。此功能使您可以为较大系统的更多输出分配功率。内置的LINQ TM网络电源管理有助于监视,报告和控制功率/诊断。
随着当今商用和军用飞机开发中使用的飞行系统和组件的复杂性不断增加,需要进行全面测试以确保系统可靠性、可维护性和支持的组件数量也在不断增加。在开发过程中对每个组件进行适当的测试对于飞行中的关键应用尤其重要,因为即使是最小的组件发生故障也可能导致灾难性的后果。此外,这些行业中的应用通常具有复杂的液压组件,使用特殊流体,或者需要在高压环境中具有故障安全功能,这会产生更加复杂的测试场景。通常,公司会使用独立公司或在其测试实验室中使用手动密集型方法执行这些关键任务测试。然而,在航空航天行业,在整个开发过程中使用非常具体和规范的方法监控和跟踪系统中使用的每个组件的所有测试数据至关重要,因此最好使用更自动化的内部解决方案,以确保所有测试都正确执行,所有数据都得到正确记录。本白皮书将讨论制造商执行此类测试可用的选项,并将向您展示为什么执行验收测试程序 (ATP) 的定制系统可能是您的组织的最佳选择。
引入自动驾驶系统(AD)提出了重要的监管和操作挑战,以确保混合交通环境中的安全和负责任的部署。尽管大量的学术工作和从业人员的努力,这些挑战仍保持开放,需要跨学科的观点融合。本文借鉴了最近的跨学科研讨会的见解,突出了广告部署的关键问题,包括法规和系统能力之间的错位,新兴事故类型以及驾驶员理解和培训中的差距。当前的法规努力与广告的发展能力保持同步,从而导致不清楚的问责制框架和安全措施不足。有意义的人类控制的概念被用作识别问题的基础。研讨会参与者同意,有意义的人类控制具有通过确保人类可以与广告充分互动并以确保清晰的故障安全和冗余机制的安全和负责任的方式进行设计来解决确定问题的重要作用。通过连续的驾驶员和车辆评估,动态安全认证以及监管机构和制造商之间的更牢固的沟通来提倡有意义的人类控制,以确保自动化车辆的安全和负责任的设计,调节和部署。实施这些动作将加强ADS监管,并有助于浏览自动驾驶系统的道德和操作复杂性。
摘要:在现实世界中的非结构化环境中部署时经过实验室训练的机器人策略通常会遭受性能下降。这发生在遇到通常在结构化实验室环境中收集的培训数据中的数据。为了克服这一挑战并在这种情况下不断地应对机器人,我们引入了CO逐渐介绍Mo Bile操纵或迷彩的巨大效果。Camo是一种机器人学习系统,它通过直接从这些现实世界环境中收集数据并异步将它们编译到服务器上以进行进一步调整,从而建立在现有的导航和操纵基础模型之上。通过其移动基础,Camo能够将许多不同的场景和现实世界的扰动纳入其不断增加的数据集中,使自己更好地适应了在非结构化环境中的困难。通过利用其操纵策略扩散头的多模式能力和随机性质,Camo可以通过自主收集的类似但看不见的任务来加强良好的操纵行为。以及船上的激光雷达传感器,以制定故障安全机制和人力干预数据,以进一步导航,随着时间的流逝,人类参与的减少,迷彩能够在现实世界中不断改进。
将 DIP 开关 (123) 设置为所需的灵敏度,将锁存继电器 (5) 设置为开或关,将继电器 (6) 设置为正常(故障安全)或反向功能。当电源连接到 A1 和 A2 时,并且没有差动电流通过传感线圈,表示差动和继电器开启(正常功能)的绿色 LED 将亮起。当检测到超过设定限值的差动电流时,其中一个红色差动 LED 将亮起,显示泄漏到地面的电缆的极性。(对于超过 15 A 的泄漏电流,两个红色差动 LED 都将亮起,表示 DDCB 已饱和并且无法检测到哪条电缆在泄漏)。当检测到高电流时,OFF 延迟开始消逝,由绿色 LED 指示,并且继电器将在设定时间到期后释放。如果选择了锁存功能,继电器将保持断电状态(正常功能),并且红色锁存 LED 将亮起,直到激活重置按钮。如果锁存功能未激活且差动电流低于设定水平,则绿色差动 LED 将亮起,并且 ON 延迟开始消逝,由绿色 LED 指示。当设定时间到期时,继电器将吸合(正常功能)。
MAX3483E 系列器件 (MAX3483E/MAX3485E/ MAX3486E/MAX3488E/MAX3490E/MAX3491E) 是具有 ±15kV ESD 保护、+3.3V、低功耗收发器,适用于 RS-485 和 RS-422 通信。每个器件包含一个驱动器和一个接收器。MAX3483E 和 MAX3488E 具有斜率限制驱动器,可最大程度降低 EMI 并减少由电缆端接不当引起的反射,从而允许以高达 250kbps 的数据速率进行无错误数据传输。部分斜率限制的 MAX3486E 传输速率高达 2.5Mbps。MAX3485E、MAX3490E 和 MAX3491E 的传输速率高达 12Mbps。所有器件均具有增强的静电放电 (ESD) 保护功能。所有发射器输出和接收器输入均采用 IEC 1000-4-2 气隙放电保护 ±15kV,采用 IEC 1000-4-2 接触放电保护 ±8kV,采用人体模型保护 ±15kV。驱动器具有短路电流限制,并通过热关断电路防止过大的功率耗散,该电路将驱动器输出置于高阻抗状态。接收器输入具有故障安全功能,当两个输入都开路时,可保证逻辑高输出。MAX3488E、MAX3490E 和 MAX3491E 具有全双工通信功能,而 MAX3483E、MAX3485E 和 MAX3486E 则设计用于半双工通信。
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。