1. 揭示使用 FPGA 的设计方法。2. 深入了解故障模型。3. 了解用于故障检测的测试模式生成技术。4. 设计时序电路中的故障诊断。5. 通过案例研究了解流程设计。单元 - I 可编程逻辑器件:可编程逻辑器件的概念、SPLD、PAL 器件、PLA 器件、GAL 器件、CPLD 架构、FPGA FPGA 技术、架构、virtex CLB 和切片、FPGA 编程技术、Xilinx XC2000、XC3000、XC4000 架构、Actel ACT1、ACT2 和 ACT3 架构。 [教材-1] 第二单元 用状态图和状态表分析和推导时钟时序电路:时序奇偶校验器、信号跟踪和时序图分析-状态表和状态图-时序电路的通用模型、序列检测器的设计、更复杂的设计问题、状态图构建指南、串行数据转换、字母数字状态图符号。多时钟时序电路的需求和设计策略。[教材-2] 第三单元 时序电路设计:时序电路的设计程序-设计示例、代码转换器、迭代电路的设计、比较器的设计、控制器 (FSM) - 亚稳态、同步、FSM 问题、流水线资源共享、使用 FPGA 的时序电路设计、时序电路的仿真和测试、计算机辅助设计概述。 [教材-2] 第四单元故障建模和测试模式生成:逻辑故障模型、故障检测和冗余、故障等效性和故障定位、故障主导性、单个故障卡住模型、多个故障卡住模型、桥接故障模型。通过常规方法、路径敏感化技术、布尔差分法、KOHAVI 算法、测试算法-D 算法、随机测试、转换计数测试、签名分析和测试桥接故障对组合电路进行故障诊断。[教材-3 和参考文献 1] 第五单元时序电路中的故障诊断:电路测试方法、转换检查方法、状态识别和故障检测实验、机器识别、故障检测实验设计。[参考文献 3]
着陆、地面导航、机器人维修/组装、故障检测/缓解、分布式系统操作、科学数据处理以及遥感任务的提示和提示 • 航天量子计算机 • 支持分布式机器人的低功耗嵌入式计算机
B.05 早期故障检测 (EFD) - 安装:此计划目标涉及在通向高火灾风险区域 (HFRA) 或高火灾威胁区 (HFTD) 的两条电路上安装早期故障检测 (EFD) 传感器。两条电路的安装正在进行中,另外两条电路的估算和许可正在进行中。我们预计一条电路将在 10 月完成,一条将在 11 月完成,两条将在 12 月完成。延迟是由于与产品供应商的合同谈判时间比预期的要长,以及估算团队开始设计的安装标准发布延迟造成的。安装标准已于 8 月发布,估算和许可工作正在进行中,优先级也不断提高。我们计划在年底前实现在两条电路上安装 EFD 的目标。
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD-Archittuction,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,Act 3 Actient Act1 anderct1 anderct1 anderct1 anderct1 anderct1 anderct1[TEXTBOOK-1] UNIT-II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计多锁顺序电路的策略。[TEXTBOOK-2] UNIT-III Sequential circuit Design: Design procedure for sequential circuits-design example, Code converter, Design of Iterative circuits, Design of a comparator, Controller (FSM) – Metastability, Synchronozation, FSM Issues, Pipelining resources sharing, Sequential circuit design using FPGAs, Simulation and testing of Sequential circuits, Overview of computer Aided Design.[Ref.3][教科书2]单元IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。[教科书-3&Ref.1]单元 - 顺序电路中的v故障诊断:电路测试方法,过渡检查方法,状态识别和故障检测实验,机器识别,故障检测实验的设计。
光伏电网、充电站、家用逆变器等交流和直流共存的场合,直流串联电弧故障的威胁变得尤为突出。有效的直流电弧故障检测可以在很大程度上帮助避免:
卡尔曼滤波器组在飞机发动机故障诊断中的应用 Takahisa Kobayashi QSS Group, Inc. 俄亥俄州克利夫兰 44135 电子邮件:Takahisa.Kobayashi@grc.nasa.gov Donald L. Simon 美国陆军研究实验室 格伦研究中心 俄亥俄州克利夫兰 44135 电子邮件:Donald.L.Simon@grc.nasa.gov 摘要 本文将卡尔曼滤波器组应用于飞机燃气涡轮发动机传感器和执行器故障检测和隔离 (FDI) 以及组件故障检测。这种方法使用多个卡尔曼滤波器,每个滤波器都用于检测特定的传感器或执行器故障。如果确实发生故障,除使用正确假设的滤波器之外的所有滤波器都会产生较大的估计误差,从而隔离特定故障。同时,估计了一组指示发动机部件性能的参数,以检测突然退化。将所提出的 FDI 方法应用于标称和老化条件下的非线性发动机仿真,并给出了巡航运行条件下各种发动机故障的评估结果。证明了所提出的方法能够可靠地检测和隔离传感器和执行器故障。术语 A16 可变旁通管道面积 A8 喷嘴面积 BST 增压器 CLM 组件级模型 FAN 风扇 FDI 故障检测和隔离 FOD 异物损坏 HPC 高压压缩机 HPT 高压涡轮 LPT 低压涡轮 P27 HPC 入口压力 PS15 旁通管道静压 PS3 燃烧室入口静压 PS56 LPT 出口静压 T27D 增压器入口温度 T56 LPT 出口温度
提出了利用算法冗余度解决 TV3-117 飞机发动机自动控制系统 (ACS) 可靠性提高问题的方法。研究的目的是开发测量通道故障诊断算法和内置于 ACS 的线性自适应机载发动机模型 (LABEM) 输入参数的应对算法。介绍了 LABEM 的基本数学原理。静态模型基于单个发动机的油门特性。油门特性是在维修后的验收测试或运行“竞赛”中获得的。燃气涡轮发动机的低级动态线性数学模型是通过状态空间法获得的。通过模型实际实施算法冗余度的技术和理论困难与发动机状态空间的高维性有关,该维性明显高于机载测量参数向量的维数。存在识别传感器故障并用建模信息替换值的问题。故障检测和隔离算法的必要性是合理的。为了提高燃油回路输入信息的可靠性,采用了集成故障检测和隔离逻辑的卡尔曼滤波算法来测量通道。介绍了基于卡尔曼滤波器的计量针阀回路传感器通道测量故障检测和隔离算法。该算法基于计算残差平方加权和 (WSSR) 的故障特征,并将其与选定的阈值进行比较。发动机台架试验和 MatLab 仿真的实践结果表明,基于所提算法的 TV3-117 航空发动机 ACS 具有较高的可靠性和质量。
摘要:功率变压器在电能的有效和可靠分布中起关键作用。及时检测和诊断变压器中的故障对于预防昂贵的停机时间至关重要,确保安全和维持电力系统的完整性。变压器中故障识别的传统方法通常依赖于手动检查和定期测试,这可能是耗时的,劳动的,并且容易受到人为错误。机器学习(ML)技术提供了有前途的解决方案,用于自动化故障检测和功率变压器中的诊断过程。近年来,机器学习(ML)技术已成为自动化故障检测和功率变压器诊断过程的有希望的工具。mL算法可以分析从变压器传感器收集的大量数据,以识别指示各种故障的模式,包括绕组故障,绝缘降解和过热。通过利用ML,公用事业和运营商可以朝着预测和主动的维护策略迈进,最大程度地降低了灾难性失败的风险并优化资产绩效。本文对应用ML算法在功率变压器中的故障识别中的最新进步进行了全面综述。它探讨了各种ML技术,包括受监督和无监督的学习,强化学习和深度学习,突出了它们在变形金刚故障检测中的优势和局限性。本文讨论了数据可用性,模型的解释性和概括,以应对这些挑战并解锁ML在增强电力系统的可靠性和效率方面的全部潜力。