摘要:故障模式、影响和危害性分析 (FMECA) 是一种定性风险分析方法,广泛应用于各种工业和服务应用。尽管该方法广受欢迎,但多年来,文献中分析了该方法的几个缺点。获取故障模式风险水平的传统方法不考虑风险因素之间的任何相对重要性,并且可能不一定代表 FMECA 团队成员的真实风险感知,通常用自然语言表达。本文介绍了 I 型模糊推理系统 (FIS) 的应用,作为改进经典 FMECA 分析中故障模式风险水平计算的替代方案,以及它在网络电网中的应用。我们基于模糊的 FMECA 首先考虑由 FMECA 专家定义的一组模糊变量,以体现与人类语言相关的不确定性。其次,使用“七加或减二”标准来设置每个变量的模糊集数量,形成一个由 125 条模糊规则组成的规则库,以表示专家的风险感知。在电力系统框架中,新的基于模糊的 FMECA 用于网络电网系统的可靠性分析,评估其相对于传统 FMECA 的优势。本文提供了以下三个关键贡献:(1) 使用模糊集表示与 FMECA 专家相关的不确定性,(2) 通过
ODU Digital Commons的机械和航空工程免费提供了本文,并为您提供了免费的公开访问。它被授权的ODU Digital Commons管理员纳入机械和航空工程论文和论文。有关更多信息,请联系DigitalCommons@odu.edu。
氧化隧道钝化接触(TOPCON)和硅杂音(SHJ)的可靠性情况如图1所示,所选降解和故障模式。尤其是半导体相关的降解模式显示降解和恢复路径:光(温度升高)诱导的降解(LETID/LID),UV诱导的降解(UVID)和潜在诱导的降解(PID)。只有在了解降解和恢复路径并提供测试方法时,才能评估其影响。右侧的图1显示了与嵌入,玻璃和接线框有关的常见降解模式或失败。当前的标准测试,尤其是IEC 61215标准的标准测试,无法揭示这些降解或故障模式。由于这些模式与安全有关,因此重要的是要了解原因并开发标准化测试以识别这些可靠性问题。
所有客人均可通过普渡大学停车门户网站以 5 美元的价格享受每日停车服务。前往“获取许可证”->“访客许可证”->“访客登录”,然后创建访客帐户。您需要输入您的车牌号。无需打印出许可证的纸质版。您可以凭有效访客许可证将车停放在 Discovery 停车场标有“A”、“B”或“C”许可证的任何地方。如需更多信息和其他停车选项,请访问普渡大学停车场。
摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
收讫日期:2021 年 2 月 4 日 接受日期:2021 年 10 月 1 日 摘要 水平定向钻井 (HDD) 是一项非常复杂的技术。尽管通过这种技术安装管道通常是成功的,但也有不成功的例子。由于该技术的复杂性,随着多个过程的相互作用,与这些过程中的不确定性相关的风险起着重要作用。这些风险与地下地层的变化、自然环境的变化、经济环境的变化以及设备的局限性、技术中断和人为因素有关。本文介绍了 HDD 技术中 14 个外部风险因素(8 个自然或环境风险因素以及 6 个经济风险因素)的 FMEA 和 Pareto-Lorenz 分析的风险评估结果。在所提出的方法中,不仅考虑了外部风险因素发生的概率,还考虑了其后果和检测故障的能力,迄今为止,这些因素在文献中尚未明确区分和考虑。这种方法显示了所分析的外部故障的发生、严重性和检测之间的关系。此外,还确定了 HDD 技术中 40 种外部风险检测可能性。计算出的风险优先级数字可以对 HDD 外部故障进行排序,并确定建议的检测选项不令人满意且不足的最关键风险,因此需要探索其他类型的风险应对措施。
三份研究信息函 (RIL),RIL-1001、RIL-1002 和 RIL-1003,涉及委员会的 SRM。2011 年 5 月 4 日的 RIL-1001(第 1 部分)讨论了阻碍包含软件的 DI&C 安全系统合理保证确定的不确定性。RIL-1002(第 2 部分)讨论了工作人员在识别和分析 DI&C 故障模式方面的进展。RIL-1003(第 3 部分)计划于 2015 年初完成。它将讨论将故障模式分析应用于量化与 DI&C 系统相关的风险的可行性。本报告识别并比较了 11 组 DI&C 安全系统故障模式。工作人员的工作产生了一组合成的通用系统级 DI&C 故障模式。工作人员的分析发现,合成的故障模式可以部分地用于支持系统设计基础的开发,以及用于分析运行过程中的性能下降。但是,工作人员的分析还发现,合成的故障模式可能不适合确定 DI&C 安全系统的安全级别。研究结果表明,可能存在其他尚未识别的系统特定故障模式。此外,识别出的部分或全部故障模式可能不会在特定系统中表现出来。因此,合成的故障模式集可能对确定合理的安全保证没有帮助。NRC 工作人员正在研究替代方案
摘要 – 本文详细分析了特定类型的碳化硅 (SiC) 功率 MOSFET 的短路故障机制,该 MOSFET 具有安全的开路故障类型特征。结果基于广泛的实验测试,包括晶体管的功能和结构特性,专门设计用于实现逐渐退化和逐渐累积的损伤。结果表明,软故障特征与栅极源结构的退化和最终部分短路有关。此外,在退化的组件上观察到由临时离线偏置引起的部分恢复。结果表明,这是一种现实的新选择,可在应用中部署,以提高系统级稳健性和系统级跳转运行模式能力,这在许多可靠性关键领域(例如运输)中非常重要。
嵌入式安全系统包括故障树分析、故障模式与影响分析、可靠性框图和可靠性工程。故障树分析是通过分析系统故障的根本原因,构建故障树来分析系统可靠性的方法。故障模式与影响分析通过分析故障模式及其对系统的影响来评估系统的可靠性。可靠性框图将系统划分为不同的模块,通过分析每个模块的可靠性来评估整个系统的可靠性。可靠性工程是一种通过分析系统在不同阶段的可靠性需求、设计、生产和维护来提高系统可靠性的系统工程方法。