本报告介绍了专门针对海洋工业的结构可靠性理论的最新进展。介绍了环境、作用于海洋结构的波浪载荷、其故障模式、极端载荷下的可靠性、系统可靠性和疲劳可靠性的综合概率模型。介绍了各种模型的应用示例,包括执行此类可靠性分析所需的必要信息。附录中提供了用于计算海洋结构可靠性水平的计算机程序的描述。
摘要—软件故障模式和影响分析 (SFMEA) 是一种系统安全分析技术,广泛应用于航空航天、汽车和其他安全关键型系统。FMEA 方法难以识别和分析由接口或功能之间的动态逻辑信息(例如软件-硬件交互)引起的故障模式。为了直观地假设模块故障对系统的影响,已经提出了许多方法。这项工作通过对安全关键型嵌入式控制系统进行实验来解决 SFMEA 的使用问题。本文介绍的工作提供了一个通用示例,说明了 SFMEA 应用于几乎没有或根本没有硬件保护的基于微处理器的计算机控制系统。本文展示了功能 FMEA、接口 FMEA 和详细软件 FMEA 在安全关键型软件系统中的应用。通过 SFMEA 方法,解决了硬件故障和软件故障。安全分析揭示了几个设计缺陷和物理故障,并提出了修改建议。本文还表明,如果在软件开发生命周期的正确阶段正确实施 SFMEA,则需求、设计和代码审查将更加有效。它还可以识别由软件导致的单点故障。本文介绍的工作可以推广并应用于任何安全关键嵌入式领域的设计师未来使用
摘要 - 在辐射环境(例如空间)中,吸收剂量和剂量率的测量是一项常见的任务。这是用称为辐射剂量计的专用仪器来完成的。在空间任务中最常用的辐射剂量计中是基于辐射敏感的场效应晶体管(RADFET)的。 在本文中,我们为辐射硬化读数系统提出了一个设计概念,以实时测量带有RADFET的吸收剂量和剂量速率。 在吸收剂量和剂量率读数模式以及随后的数据处理之间的连续切换是由自适应耐受性缺陷耐受性的多处理系统对芯片(MPSOC)进行的。 使用嵌入式静态随机访问存储器(SRAM)对粒子通量的集成框架控制器(SRAM)实现了自主选择操作和耐故障模式,从而在可变辐射条件下实现了最佳性能。。在本文中,我们为辐射硬化读数系统提出了一个设计概念,以实时测量带有RADFET的吸收剂量和剂量速率。在吸收剂量和剂量率读数模式以及随后的数据处理之间的连续切换是由自适应耐受性缺陷耐受性的多处理系统对芯片(MPSOC)进行的。使用嵌入式静态随机访问存储器(SRAM)对粒子通量的集成框架控制器(SRAM)实现了自主选择操作和耐故障模式,从而在可变辐射条件下实现了最佳性能。
摘要—软件故障模式和影响分析 (SFMEA) 是一种系统安全分析技术,广泛应用于航空航天、汽车和其他安全关键型系统。FMEA 方法难以识别和分析由接口或功能之间的动态逻辑信息(例如软件-硬件交互)引起的故障模式。为了直观地假设模块故障对系统的影响,已经提出了许多方法。这项工作通过对安全关键型嵌入式控制系统进行实验来解决 SFMEA 的使用问题。本文介绍的工作提供了一个通用示例,说明了 SFMEA 应用于几乎没有或根本没有硬件保护的基于微处理器的计算机控制系统。本文展示了功能 FMEA、接口 FMEA 和详细软件 FMEA 在安全关键型软件系统中的应用。通过 SFMEA 方法,解决了硬件故障和软件故障。安全分析揭示了几个设计缺陷和物理故障,并提出了修改建议。本文还表明,如果在软件开发生命周期的正确阶段正确实施 SFMEA,则需求、设计和代码审查将更加有效。它还可以识别由软件导致的单点故障。本文介绍的工作可以推广并应用于任何安全关键嵌入式领域的设计师未来使用
在架构探索阶段,仅考虑高级故障模式。解决其缓解措施仅基于设计假设产生对安全机制的要求。一旦设计规范固化,并且 RTL 设计开始,就可以应用静态分析技术来估计安全机制的有效性 - 它们的诊断覆盖率 (DC),在 FMEDA 计算中转换为 K RF 和 K MPF。这些工具还可以潜在地提出额外的低级安全机制,例如在易受攻击的触发器上实施 TMR。
• 性能监控和错误分析:遥测系统跟踪与 AI 模型相关的关键性能指标,例如准确度、精确度、召回率和计算资源利用率(例如 CPU、GPU 使用率),这些指标对于评估训练和推理作业期间的模型有效性至关重要。这些系统还可以深入了解训练和推理操作期间的错误率和故障模式,并帮助识别可能影响 AI 性能的问题,例如模型漂移、数据质量问题或算法错误。这些系统的示例包括 Juniper Apstra 仪表板、TIG Stack 和 Elasticsearch。
越来越多的电动汽车运输的量以及在海上扑灭EV涉及的火灾的挑战引起了行业的关注,电动汽车与最近在Roros上发生的几起高调大火有关。虽然这些损失的情况有所不同,并且还没有确定电动汽车和锂离子(锂离子)电池组的潜在参与,但很明显,锂离子电池供电的电动汽车呈现出直到最近才遇到的独特风险。本文档简要介绍了锂离子电池的功能,其主要故障模式以及当前的降低风险的最佳实践,用于发货Roros上的EVS。
• 每个设备都有需要理解和设计的故障机制 • 高电场导致时间相关击穿 (TDB) • 高电场和热载流子导致电荷捕获 • 切换会导致反向恢复、高压摆率和热载流子磨损带来的应力 • 已知的 GaN 故障模式是切换时间尺度上的 Rds-on 增加。这种动态 Rds-on 增加是由于电荷捕获造成的。 • 可靠性工程包括使 FET 能够可靠地承受应用中的应力
这些技术中的许多都源自非核工业。例如,使用 HAZOP(危险和可操作性研究)技术来评估化工厂设计的充分性是一种成熟的方法。这是一种特别有用但耗时的方法,适用于工厂设计的不同阶段。它可以识别工厂元件的重要故障模式以及需要更详细评估的工厂部件,如下所述。举个例子,在开发英国 THORP 工厂的设计和安全案例时,广泛使用了 HAZOP 方法。
• 测试电子封装 • 制造数据和统计过程控制 (SPC) • 进行故障模式、机制和严重性评估 (FMECA) 的技术 • 用于质量和可靠性测试的测试标准,如 JEDEC、Mil-Spec 和 IPC,包括电气性能、热循环、预处理和加速寿命测试 (HALT 和 HAST) • 故障分析技术,包括破坏性和非破坏性方法,如 CSAM、FIB、横截面、显微镜和 CT 断层扫描 • 分析测试数据的技术,包括威布尔分析等统计分布
