(5) 降低故障应力 在额定电压范围内使用 POSCAP 时,其特性稳定,但在施加过电压等短路时可能会损坏。使用 POSCAP 时,通过降低环境温度、纹波电流和施加电压,可以延长达到故障模式的时间。[故障率] ¡ 耐久性为 105 ° C × 2,000h 时 0.5%/1,000h(环境温度:105 ° C,施加额定电压或类别电压) ¡ 耐久性为 105 ° C × 1,000h 或 125 ° C × 1,000h 时1.0%/1,000h (环境温度 : 105 ° C, 施加额定电压或类别电压) ¡ 耐久性为 85 ° C × 1,000h 的情况 1.0%/1,000h (环境温度 : 85 ° C, 施加额定电压)
固体钽电容器广泛用于太空应用,以过滤电源电路中的低频纹波电流并稳定系统中的直流电压。根据军用规格 (MIL-PRF-55365) 制造的钽电容器是可靠的元件,D 级或 S 级每 1000 小时的故障率低于 0.001%(故障率低于 10 FIT),因此这些部件属于可靠性最高的电子元件。尽管如此,钽电容器确实会发生故障,一旦发生,可能会对系统造成灾难性的后果。这是由于短路故障模式,可能会损坏电源,也是由于在低阻抗应用中发生故障时,带有锰阴极的钽电容器具有自燃能力。在此类故障中,钽颗粒与过热的氧化锰阴极产生的氧气发生放热反应,释放出大量能量,不仅会损坏部件,还会损坏电路板和周围元件。与陶瓷部件相比,钽电容器的一个特点是电容值相对较大,在当代小尺寸芯片电容器中电容值达到数十和数百微法拉。这可能会导致电路板首次通电时部件出现所谓的浪涌电流或开启故障。这种故障被认为是钽电容器中最常见的故障类型 [1],是由于电路中电压 dV/dt 的快速变化,在电路中电流不受限制时产生高浪涌电流尖峰,I sp = C×dV/dt。这些尖峰电流可以达到数百安培,并导致系统发生灾难性故障。浪涌电流故障的机理尚未完全了解,相关文献中讨论了不同的假设。其中包括持续闪烁击穿模型 [1-3];电感相对较高的电路中的电振荡 [4-6];阴极局部过热 [5, 7, 8];MnO 2 晶体撞击导致的五氧化二钽电介质机械损伤 [2, 9, 10];或电流尖峰期间产生的电磁力引起的应力诱导电子陷阱生成 [11]。然而,我们的数据显示闪烁击穿电压明显高于浪涌电流击穿电压,因此仍不清楚为什么没有闪烁的部件在浪涌电流测试 (SCT) 期间会在相同电压下失效。关于浪涌电流故障的一个普遍接受的解释是,在浪涌电流条件下,如果电流供应不受限制,钽电容器中的自愈机制不起作用,如果电流受到限制,那么本来会是一个轻微的闪烁尖峰,但到了部件上就会变成灾难性的故障 [1, 12]。电子元件(尤其是钽电容器)的使用风险可以定义为故障概率和后果(例如,表示为返工、重新测试、重新设计、项目延误等成本)的乘积。在这方面,钽电容器可以被视为具有高应用风险的低故障率部件。为了降低这种风险,有必要进一步开发筛选和鉴定系统,特别注意现有程序中可能存在的缺陷。
维护策略评估是一个已被广泛解决的问题。然而,由于这项活动特有的经济利益巨大,因此它仍然是一个值得考虑的话题。本文介绍的工作从数据反馈的角度处理了这个问题。通过检查故障率分布的形式进行统计分析。实施给定维护策略所产生的规律告诉我们代表该策略的选择的相关性。从原始维修时间构建这些规律是一种全局方法,往往会隐藏诱发现象。将维修过程分解为各个阶段使我们能够更好地识别策略参数的影响。对每个基本阶段分布的分析都很有趣,因为它提供了有关实施的维护策略的性能的信息。
在过去的 70 年中,人们对维护的期望值已大幅提高。维护已从功能故障后执行的被动过程发展为预防性活动,即根据时间表对物品进行大修或丢弃。预防性维护基于这样的假设:组件具有确定的使用寿命,超过该使用寿命后,其故障率会增加。但是,使用寿命的估计通常具有很大的不确定性。因此,定期维护通常进行得太早或太晚,导致不必要的更换或功能故障导致的高成本。更糟糕的是,无法从外部检查的组件通常会按计划拆卸和检查,这存在在检查或重新组装过程中引入故障的风险,从而导致不久后发生故障。换句话说,由于侵入性检查或日历维护,有时组件在使用寿命中期就会出现早期故障。
4.7.6 电解电容器是一种特殊情况,其功率因数比其他类型的电容器高出几倍,并且由于“泄漏”电流会导致显著的自热。这种自热会随着时间推移而增加,并可能累积导致完全失效,因此降额尤为重要。非电解电容器可以降额至最大额定电压的 10%,尽管这在物理上很少可行;然而,这对于电解电容器来说并不适用,因为需要最低电压来建立和维持这些类型的极化,因此在这些低水平下可能会出现更高的故障率。固体钽类型的主要降额参数是“浪涌电压”,而其他电解类型的主要降额参数是“纹波电流”。这些电容器不得在低于最低规定电压的情况下运行;它们应该降额,但仍符合制造商的最低要求。
由于物品的可靠性或寿命不仅取决于其设计,还取决于其使用、制造和测试方式,以及其已经或将要经历的压力,因此在故障可能性评估中必须考虑所有这些因素。虽然物品的设计会引入对内部或外部故障机制的敏感性(例如,辐射耐受性、压力),但其制造质量(其固有或保证/筛选的质量或是否符合公认标准)和使用年限也会影响其可靠性。高质量的部件可能具有较少的固有使用或压力敏感性(例如,热、电压、电流、老化、机械、环境),但制造或安装问题可能会增加敏感性或加剧现有的弱点。因此,在可靠性分析中,必须考虑导致故障的所有因素及其基本物理特性,以准确制定故障率并评估概率。
摘要 - 随着全球电子商务的快速增长,物流行业对自动化的需求正在增加。这项研究的重点是仓库中的自动采摘系统,利用深度学习和强化学习技术来提高选择效率和准确性,同时降低系统故障率。通过经验分析,我们证明了这些技术在改善机器人拾取性能和对复杂环境的适应性方面的有效性。结果表明,集成的机器学习模型极大地胜过传统方法,有效地应对峰订单处理的挑战,减少操作错误并提高整体物流效率。另外,通过分析环境因素,本研究进一步优化了系统设计,以确保在可变条件下的高效和稳定的操作。这项研究不仅
1.3 计算机可靠性设计 - 罗马实验室 - ORACLE 是一个计算机程序,旨在帮助应用 MIL-HDBK-217 的部件应力分析程序。根据环境使用特性、零件数量、热应力和电应力、子系统维修率和系统配置,该程序计算零件、组件和子组件的故障率。它还标记过载部件,帮助用户执行权衡分析,并提供系统平均故障时间和可用性。ORACLE 计算机程序软件(提供 VAX 和 IBM 兼容 PC 版本)以替换磁带/磁盘成本提供给所有国防部组织,以及作为政府提供财产 (GFP) 应用于国防部特定合同的承包商。可通过书面请求获得条款和条件声明,地址为:Rome Laborato~/ERSR, Grtffiss AFB, NY 13441-5700。
为管理非载客 UTM 而构建的系统无法“升级”以达到监管认证所需的安全级别。需要实现每人使用飞行器 10 -9 /小时的全系统故障率。需要从一开始就将 ATC 系统 ([16], [17], [18], [19]) 和机载系统 ([20], [21], [22], [23]) 认证的监管要求纳入开发生命周期。追溯添加未作为开发一部分进行的流程、阶段和产品,即“稍后认证”方法,是不可行的和/或成本过高。 设计保证级别 (DAL,从 A 级(最高级别)到 E 级(最低级别)越低,开发成本和工作量越低。因此,D3 的目标是选择尽可能低的 DAL。D3 系统的 DAL 是在产品开发过程中作为系统架构和系统规范阶段的一部分确定的。
1.1 范围。本规范涵盖用于飞机、导弹、航天器、船舶和其他主要交通工具或地面支持设备(见 6.1)的电磁密封继电器的一般要求。这些继电器设计用于从低电平到功率切换的全范围工作,触点额定电流高达 25 安培交流电 (ac) 或直流电 (dc)。规范表(见 3.1)规定了 25 安培继电器的要求,仅适用于电阻负载的最大负载额定值为 25 安培的继电器。所有其他负载额定值(电机、电感、灯)均小于 25 安培。故障率 (FR) 水平建立在 90% 的置信水平上,对于合格,60% 的置信水平对于维持合格,基于在本文规定的额定负载条件下在 +125°C 下进行 100,000 次循环。有关应用和注意事项信息,请参阅 6.1。