摘要:短波红外胶体量子点 (SWIR-CQD) 是能够跨 AM1.5G 太阳光谱进行收集的半导体。当今的 SWIR-CQD 太阳能电池依赖于旋涂;然而,这些薄膜的厚度一旦超过 ∼ 500 nm,就会出现开裂。我们假定刮刀涂覆策略可以实现厚 QD 薄膜。我们开发了一种配体交换,并增加了一个分解步骤,从而能够分散 SWIR-CQD。然后,我们设计了一种四元墨水,将高粘度溶剂与短 QD 稳定配体结合在一起。这种墨水在温和的加热床上用刮刀涂覆,形成了微米厚的 SWIR-CQD 薄膜。这些 SWIR-CQD 太阳能电池的短路电流密度 (Jsc) 达到 39 mA cm − 2,相当于收集了 AM1.5G 照明下入射光子总数的 60%。外部量子效率测量表明,第一个激子峰和最接近的法布里-珀罗共振峰均达到约 80% 这是在溶液处理半导体中报道的 1400 nm 以上最高的无偏 EQE。关键词:红外光伏、量子点、配体交换、刀片涂层■ 介绍
本研究研究了电沉积 FeNiOOH/Fe 2 O 3 /石墨烯纳米混合电极的光电化学行为,该电极具有精确控制的结构和成分。光电极组件采用生物启发的方式设计,其中每个组件都有各自的功能:Fe 2 O 3 负责吸收光,石墨烯框架负责适当的电荷载流子传输,而 FeNiOOH 覆盖层负责轻松的水氧化。通过线性扫描光伏安培法、入射光子到电荷载流子转换效率测量和长期光电解研究了每种成分对光电化学行为的影响。与原始 Fe 2 O 3 相比,性能最佳的 FeNiOOH/Fe 2 O 3 /石墨烯系统获得的光电流高出 2.6 倍。瞬态吸收光谱测量表明,Fe 2 O 3 /石墨烯样品的空穴寿命增加。然而,长期的光电解测量结合拉曼光谱证明,底层的纳米碳框架被光生空穴腐蚀。这个问题通过电沉积一层薄薄的 FeNiOOH 覆盖层来解决,该覆盖层可以快速接受来自 Fe 2 O 3 的光生空穴,从而消除导致石墨烯腐蚀的途径。
摘要:CRISPR/Cas 是一种适应性免疫系统,尤其是在古细菌和细菌中发现,它彻底改变了农业领域,并成为一种潜在的基因编辑工具,让分子科学家对改进的基因操作产生了极大的兴奋。CRISPR/Cas9 是一种 RNA 引导的核酸内切酶,在其前身 ZFN 和 TALEN 中很受欢迎。CRISPR 与其前身相比的用途在于使用短 RNA 片段来定位靶标并破坏双链,从而避免了蛋白质工程的需要,从而允许对基因编辑进行时间效率测量。它是一种简单、灵活且高效的可编程 DNA 切割系统,可以进行修改以用于广泛的应用,例如敲除基因、控制转录、修改表观基因组、控制全基因组筛选、修改抗病和抗逆基因以及成像染色体。然而,基因货物运送系统、脱靶切割和生物体安全问题对该系统提出了重大挑战。已经进行了多次尝试来纠正这些挑战;使用sgRNA设计软件、cas9切口酶和其他突变体。因此,进一步解决这些挑战可能会为CRISPR/cas9解决农业相关问题开辟道路。
摘要:脑瘤是年轻人死亡的第二大原因。脑瘤的形状和大小多种多样。良性脑瘤与癌性脑瘤并存。在医学图像处理中,检测和分割脑瘤极其困难。这里使用了四种预处理形式:自适应中值滤波器 (AMF)、中值滤波器、高斯滤波器和维纳滤波器。然后使用以下内容确定性能指标 1. 均方误差率 (MSE) 是系统准确度的度量。2. 峰值信噪比 (PSNR) 3. 结构相似性指数 4. 第四个是 Spearman 等级相关。根据上述测量结果,自适应中值滤波器对常规和异常图像均能产生最佳效果。关键词:脑瘤、滤波器和效率测量 1. 简介脑瘤被描述为脑内细胞外物质的不规则生长和异常。肿瘤是细胞不受控制地生长的结果。根据肿瘤的起源(转移性),可将肿瘤分为原发性肿瘤或继发性肿瘤。脑肿瘤的侵袭性很难评估。扩散到大脑的癌细胞开始在身体的每个部位扩散。例如,乳腺癌或肺癌细胞通常通过血流传播到大脑。扩散到身体其他部位的脑肿瘤通常是癌性的。良性肿瘤生长缓慢,不像恶性肿瘤那么危险。它很少扩散,边界清晰。手术是治疗这种疾病最有效的方法,尽管危险性较低。恶性肿瘤的生长速度不可控制,而且很快。这是一种危及生命的情况,需要立即就医。肿瘤的诊断基于肿瘤细胞的形态,以及某些肿瘤细胞特征,如发展速度、外观、肿瘤中间的死亡肿瘤细胞、血液供应和侵袭潜力。世界卫生组织将肿瘤分为四类
ICR0537 家用热泵热水器的加速寿命试验 Van D. Baxter、R. L. Linkous 橡树岭国家实验室 (ORNL),大楼。3147,M/S 6070 Oak Ridge,田纳西州,美国,865/574-2104,865/574-9338,vdb@ornl.gov 摘要 十个原型“嵌入式”热泵热水器 (HPWH) 被放置在环境控制的测试设施中,并经过约 7300 个压缩机工作循环的耐久性测试程序。这项耐久性测试旨在代表七到十年的正常压缩机循环,以满足住宅的热水需求。在耐久性测试运行期间,HPWH 的热泵部分没有出现压缩机、蒸发器风扇或电源继电器故障。事实证明,第一代控制系统是设备中最不可靠的组件。每个控制器包括四个温度传感器,用于监控关键控制参数。在总共 40 个传感器中,有 16 个在耐久性计划期间发生故障。这些故障是由于传感器引线接头问题造成的。所有设备的效率测量表明,原型 HPWH 的效率至少是传统电阻热水器的两倍。简介 本研究中所研究的 HPWH 旨在成为家用电热水器 (EWH) 的“嵌入式”替代品,如图 1 所示,为剖面示意图。该设计基于最初于 1999 年开发的专利概念(美国专利号5,906,109,1999 年 5 月;美国专利号5,946,927,1999 年 9 月)。Baxter 和 Linkous (2002) 在一份详细的项目报告中全面描述了该 HPWH 设计的开发。2000 年夏末,为本文所讨论的耐久性测试计划建造并交付了十台原型机。另外 18 台机组被制造出来并送往 ORNL,用于 DOE 国家现场测试计划(Murphy 和 Tomlinson 2002)。HPWH 机组的大小与垂直圆柱体相当,高 5 英尺(1.5 米),直径 2 英尺(0.6 米)。一个小型空气对水蒸汽压缩热泵机组(约 3400 Btu/h (1 kW) 加热能力),使用 R-134a 作为制冷剂,位于传统 EWH 水箱(容量 45.9 加仑(173.5 升))的顶部。蒸发器的热量由环境空气提供。该机组的冷凝器盘管缠绕在水箱底部的三分之二处,为水提供热量。根据设计,小型压缩机从冷启动到加热一罐水需要 6-8 小时,或者在抽取 10.7 加仑(40.4 升)水后需要大约 1.5-2 小时才能将水罐加热。包括传统的 EWH 电阻加热元件(一个在水箱顶部,一个在水箱底部),为热泵装置提供备用(或在热泵发生故障时提供紧急加热)。