随着石化、采矿、制药、纺织、金属加工和食品工业的需求不断增长,也增加了因石油和石油源污染物而浪费水的风险。[1] 此外,石油勘探和开采、炼制和运输过程中的漏油事件对水污染构成了高度威胁。[2,3] 人们开发并使用了各种方法来处理油污染水,包括机械分离、化学处理、生物处理、膜过滤和吸附。[4–6] 在所有这些方法中,通过工程表面吸附油来清理油是由于其易于使用、去除效率高、成本低以及环境友好而最受欢迎的方法。[7] 用于清理油的理想吸附剂材料应同时具有高疏水性和亲油性。 [8] 不同类型的具有这种双重润湿性(同时表现出疏水性和亲油性)的材料已被提出用于选择性吸附
使用我们的TT108PM10太阳能电池板系列,由108个高效的10个母线,Monoperc Half Cut Cells制造,我们将屋顶太阳能安装的限制推到任何边界之外。基于选定的高质量材料,再加上我们的高生产标准,我们提供了独特的可靠太阳能模块,可在最小空间中产生长期清洁能源,其输出范围从395WP到410WP不等。由108、144或156x 182mm太阳能电池制成的10BB PERC单晶太阳能电池板是大型屋顶或太阳能固定太阳能发电厂的坚实且经济的解决方案。增加的可用太阳能电池区域可提高效率高并提高太阳能发电,而10个母线却减少了明显的电池中的电阻损失,从而使太阳能电池板成为项目的首选解决方案。
人工智能是机器像人类一样工作的能力。这一概念最初始于数学模型的出现,数学模型根据输入到系统中的输入给出计算输出。后来,随着各种算法的引入,这一概念得到了修改,这些算法既可以根据整体数据分析给出输出,也可以通过选择先前数据中的信息给出输出。由于人工智能效率高,能够处理所有专业的复杂病症,因此它正逐渐成为一种受欢迎的治疗方式。在牙科领域,人工智能在过去几十年也得到了普及。它们被发现可用于修复牙科、口腔病理学和口腔外科的诊断。在正畸学中,它们被用于诊断、治疗需求评估、头颅测量、治疗计划和正颌手术等。当前的文献综述旨在强调人工智能在牙科领域的应用,特别是在正畸学和正颌手术中的应用。
没有任何材料不能用技术等离子处理。这意味着非极性塑料甚至 PTFE 都适合粘合。通常需要使用非常腐蚀性的化学品才能通过其他方式实现类似的表面效果。等离子处理对环境没有任何负面影响。腐蚀性介质仅存在于等离子体中。一旦关闭等离子体,它们就会消失。等离子处理仅影响表面。因此,热敏感材料和生物体(种子、人体)也可以得到处理。等离子处理效率高。无需花费化学品的储存和处置、保护措施、蚀刻剂的去除或干燥费用。等离子处理还适用于机械处理或液体化学化合物无法到达的地方,例如腔体、底切和间隙。由于等离子体能够以原子精度工作,因此可以生产和处理间隙小于一微米的结构。同样,可以生产或去除这种尺寸的封闭层。
摘要 基因组编辑技术的快速发展为治疗肿瘤、心血管、神经退行性疾病和单基因疾病带来了新的希望。最近,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为一种强大的基因编辑工具,与传统方法相比,具有编辑效率高、成本低等优势。人类多能干细胞 (hPSC) 具有很强的增殖和分化潜能,已被用于干细胞治疗。二十多年来,hPSC 的潜力和 CRISPR/Cas9 基因组编辑的能力一直在改变医学遗传学的范式。由于 hPSC 被归类为难以转染的细胞,因此迫切需要开发一种合适有效的方法将 CRISPR/Cas9 递送到这些细胞中。本综述重点介绍了在干细胞中递送 CRISPR/Cas9 的各种策略。
微生物多糖(MP)是细菌、真菌、藻类等微生物在代谢过程中分泌的生物聚合物。与来自植物和动物的多糖相比,MP具有来源广泛、生产效率高、受自然环境影响较小等优势。MP最吸引人的特点是其多种生物活性,如抗氧化、免疫调节、抗肿瘤和抗菌活性,在食品、化妆品和生物医药中显示出巨大的应用潜力。这些生物活性受其复杂的分子结构精确调控。然而,这种精确调控背后的机制尚不完全清楚。此外,MP的合成过程涉及大量基因。MP合成的关键基因需要进一步探索,MP合成的调控机制也尚未阐明。本期特刊旨在发表最近的创新研究成果和关于微生物多糖研究进展的综述论文:生物活性、分子机制和食品应用。
成簇的规律间隔的短回文重复序列 (CRISPR)-CRISPR 相关 (Cas) 蛋白构成了多种细菌和古菌的先天适应性免疫系统。该免疫系统通过提供序列特异性获得性免疫,帮助它们抵抗噬菌体和外来 DNA 的入侵。由于易于使用、成本低、效率高、准确性高以及应用范围广泛等众多优势,CRISPR-Cas 系统已成为使用最广泛的基因组编辑技术。因此,CRISPR/Cas 技术的出现凸显了其在临床诊断中的巨大潜力,并可能成为现代医学的强大资产。本文回顾了最近报道的基于 CRISPR/Cas 系统的用于筛查、诊断和治疗不同疾病的应用平台。总结了其局限性、当前挑战和未来前景;本文将为未来的基因组编辑实践提供有价值的参考。
• F1. 东盟可以整合其成员国的资源(例如土地、劳动力、资本)来增加产量、降低成本,并在与中国和日本等较大经济体的竞争中更具竞争力。• F2. 东盟具有竞争优势,因为其劳动力成本较低,从而降低了基本商品(例如低技术商品、低技能商品、低成本商品)的生产成本,使其在吸引外资方面比中国和日本更有效率、更有竞争力。• F3. 东盟在与日本的竞争中处于劣势,因为日本的劳动力规模较小,由于其生产系统效率高,因此在制造专业化商品(例如高科技商品、高技能商品、高成本商品)方面更为有效。• F4. 东盟在与中国的竞争中处于劣势,因为中国庞大的劳动力受教育程度更高、技能更高,生产从廉价商品转向高成本和专业化商品。
没有任何材料不能用技术等离子处理。这意味着非极性塑料甚至 PTFE 都适合粘合。通常需要使用非常腐蚀性的化学品才能通过其他方式实现类似的表面效果。等离子处理对环境没有任何负面影响。腐蚀性介质仅存在于等离子体中。一旦关闭等离子体,它们就会消失。等离子处理仅影响表面。因此,热敏感材料和生物体(种子、人体)也可以进行处理。等离子处理效率高。无需花费化学品的储存和处置、保护措施、蚀刻剂去除或干燥费用。等离子处理还适用于机械处理或液体化学化合物无法到达的地方,例如腔体、底切和间隙。由于等离子体能够以原子精度工作,因此可以生产和处理间隙小于一微米的结构。同样,可以生产或去除这种尺寸的封闭层。
我们提供了经验证据,表明在某些标准问题上,我们的方法比传统的建设性回溯方法效率高得多。例如,在 n 皇后问题上,我们的方法可以快速找到一百万皇后问题的解[28]。我们认为基于修复的方法之所以能够胜过建设性方法,是因为完整分配在指导搜索方面比部分分配更具信息性。但是,额外信息的效用取决于领域。为了帮助阐明这种潜在优势的性质,我们提出了一个理论分析,描述了各种问题特征如何影响该方法的性能。例如,该分析显示了当前分配和解决方案之间的“距离”(就所需的最少修复次数而言)如何影响启发式的预期效用。本文描述的工作受到 Adorf 和 Johnston [2, 22] 开发的一种令人惊讶的有效神经网络的启发,该网络用于安排哈勃太空望远镜的天文观测。