摘要 — 本文介绍了一种新颖的多机器人覆盖路径规划 (CPP) 算法 - 又名 SCoPP - 该算法提供了一种时间高效的解决方案,根据多机器人系统中的每个机器人的初始状态,为其提供工作负载平衡的计划。该算法考虑了指定关注区域中的不连续性(例如,禁飞区),并使用离散的、计算效率高的最近邻路径规划算法为每个机器人提供了优化的有序路径点列表。该算法涉及五个主要阶段,包括将用户输入转换为地理坐标中的一组顶点、离散化、负载平衡分区、在离散空间中拍卖冲突单元以及路径规划程序。为了评估主要算法的有效性,考虑了多无人机 (UAV) 洪灾后评估应用,并在三个不同大小的测试地图上测试了该算法的性能。此外,我们还将我们的方法与 Guasella 等人创建的最新方法进行了比较。进一步分析了 SCoPP 的可扩展性和计算时间。结果表明,SCoPP 在任务完成时间方面更胜一筹;对于一个由 150 个机器人组成的团队覆盖的大地图,其计算时间不到 2 分钟,从而证明了其计算可扩展性。
分子建模在发现沸石有机结构导向剂 (OSDA) 方面发挥着重要作用。通过量化主客体相互作用的强度,可以选择具有成本效益的分子,以最大限度地结合给定的沸石骨架。在过去的几十年中,人们使用了各种方法和理论水平来计算这些结合能。然而,对于高通量虚拟筛选工作的最佳计算策略,尚无共识。在这项工作中,我们比较了从静态和时间平均模拟中获得的 272 个沸石-OSDA 对的密度泛函理论 (DFT) 和 Dreiding 力场计算的结合亲和力。借助自动化软件,我们表明冻结姿势方法的 Dreiding 结合能与 DFT 能量相关性最好。它们对初始晶格参数和优化算法的选择也不太敏感,并且比时间平均方法的计算成本更低。此外,我们证明了,通过分子动力学模拟更广泛地探索构象空间,尽管成本高出几个数量级,但与冻结姿势方法相比,结合能趋势并没有显著改善。代码和基准数据是开源的,为计算沸石-OSDA 对中的结合能提供了可靠且计算效率高的指导。
我们新的、更坚定的愿景是到 2030 年将整个集团的净运营排放量减少 50%,这表明我们专注于与《巴黎协定》的目标和 1.5 度路径一致的中期行动。迅速减少我们自己的排放量是必要的,但还不够。要成为能源转型的有效变革推动者,我们必须通过为我们的客户和最终用户提供排放量更低(最终为净零)的能源来帮助社会脱碳。为了实现这一目标,我们有一个明确的计划,将我们在石油和天然气方面的经验和能力应用于能源系统的新领域。我们将从高度集中、碳效率高的石油和天然气业务中获得强劲的现金流,为我们的转型提供资金。我们将继续扩大对可再生能源的投资,以从我们现有的投资组合和高质量的项目渠道中创造价值。我们正在开发和部署未来的氢能和碳捕获与储存 (CCS) 工业价值链,以使其他行业能够实现其活动的脱碳。与此同时,我们将继续与我们的供应商和客户、东道国政府和民间社会合作,开发商业模式、政策和框架,使世界到 2050 年实现净零排放。
越来越多的房主选择光伏(PV)系统和/或电池存储以最大程度地减少其能源账单并最大程度地利用能源。这刺激了最大程度地实现这些目标的高级控制算法的发展。但是,开发此类控制器时面临的一个普遍挑战是对家庭电力征服的准确预测,尤其是对于较短的时间分辨率(15分钟)和数据效率高的方式。在本文中,我们分析了转移学习如何通过从多个家庭中利用数据来改善单一房屋的负载预测来提供帮助。具体来说,我们使用来自多个不同家庭的数据训练先进的预测模型(时间融合变压器),然后在具有有限数据的新家庭(即只有几天)上进行对全球模型的捕获。所获得的模型用于预测家庭在接下来的24小时(日前)的时间分辨率为15分钟的时间,目的是在高级控制器(例如模型预测控制)中使用这些前铸件。我们在(i)预测准确性(〜15%的MAE降低)和(ii)控制性能(〜2%的能源成本降低)(使用现实世界中的家庭数据)方面显示了这种转移学习设置的好处,而仅使用单个新家庭的数据,而仅使用单个新家庭的数据。
摘要:电价补贴有利于微电网市场的进一步发展,为应对微电网发电成本的降低,对微电网的储能补贴成为影响其进一步发展的关键因素,因此探索建立政府对微电网储能价格的补贴机制十分必要。本文分别考虑政府补贴和微电网储能补贴的激励相容约束和参与约束,分别研究了隐藏信息和无隐藏信息的情况,建立了激励相容约束的微电网储能补贴模型,分析了“自发电+储能”模式下政府补贴与微电网储能的效率。结果表明:对于微电网用户而言,政府补贴与储能补贴之间存在逆向选择问题,在无隐藏信息的情况下,政府可以根据微电网用户不同的储能效率水平与其签订不同的合同。在信息隐匿的情况下,政府最好为不同储能效率的微网用户设计不同的激励合同菜单,这样可以保证储能效率低的微网用户继续参与微网建设,而储能效率高的微网用户可以更好地控制自发、自用和剩余电量上网的成本,更好地选择高监管的二氧化碳减排量和发电容量。
数字孪生是特定系统或物理资产不断发展的虚拟模型,它吸收资产生命周期数据,使数字孪生成为动态更新的资产特定模型,为智能自动化提供支持并推动关键决策。数字孪生对国家安全、工业发展和社会福祉等关键领域都有潜在影响。如果能够可靠地预测,数字孪生可以彻底改变依赖于复杂系统状态动态变化估计的关键决策过程。本文说明了预测性数字孪生(将数据驱动学习与基于预测物理的建模相结合)如何有助于提高任务准备度。数字孪生在数学上表示为概率图形模型,其中状态、控制、观测、感兴趣的数量和奖励等关键元素被建模为随机变量。图形模型表示这些不同元素之间的关系,以及它们随时间的演变和不确定性。该公式说明了无人机 (UAV) 结构数字孪生的开发。数字孪生结合了高保真结构有限元模型、计算效率高的降阶模型以及机载结构传感器生成的观测数据。一个示例展示了当无人机在飞行过程中经历结构退化时数字孪生如何更新,然后用于最佳地重新规划任务轨迹。
现代仪器系统和数据采集系统需要低到中等分辨率、中速的模数转换器 (ADC)。由于这些系统大多是便携式的,因此 ADC 规范对功率和面积参数有严格的要求。尽管传统的逐次逼近寄存器 (SAR) ADC 因结构简单、模拟模块少而在这些应用中很受欢迎,但它们占用的芯片面积很大。传统 SAR ADC 采用二进制加权电容电荷再分配数模转换器 (DAC) [1,2]。传统电容电荷再分配 DAC 的两个主要限制是转换速度和庞大的电容阵列。较大的 MSB 电容限制了转换速度。这种架构中使用的 DAC 电容阵列变得非常笨重。文献中提出了一些新方法来提高 SAR ADC 的速度 [3,4]。此外,还提出了一些用于 SAR ADC 的面积效率高的 DAC 架构 [5-7]。其中一些 ADC 在性能系数 (FOM) 方面优于其他 ADC,但由于所用 DAC 架构的类型,面积效率 (AE) 参数会降低。[8、9] 中的 SAR ADC 将分辨率可变性融入传统电荷再分配 ADC,以适应需要不同分辨率的多种信号,适用于生物医学信号采集系统等应用。
摘要 — 本研究通过一种计算效率高的鲁棒控制策略解决了联网电动汽车的生态自适应巡航控制问题。该问题在空间域中采用非线性电力传动系统模型和运动动力学的真实描述来制定,以产生凸最优控制问题 (OCP)。OCP 通过一种新颖的鲁棒模型预测控制 (RMPC) 方法解决,该方法处理由于模型不匹配和前导车辆信息不准确而引起的各种干扰。RMPC 问题通过半正定规划松弛和单线性矩阵不等式 (sLMI) 技术解决,以进一步提高计算效率。使用实验收集的驾驶周期评估所提出的实时鲁棒生态自适应巡航控制 (REACC) 方法的性能。通过与标称 MPC 进行比较来验证其鲁棒性,标称 MPC 会导致速度限制约束违规。所提出方法的能源经济性优于最先进的时域 RMPC 方案,因为可以将更精确拟合的凸动力传动系统模型集成到空间域方案中。与传统恒定距离跟随策略 (CDFS) 的额外比较进一步验证了所提出的 REACC 的有效性。最后,验证了 REACC 可以借助 sLMI 和由此产生的凸算法实现实时实现。
本文全面分析了分布的高性能计算方法,以加速深度学习培训。我们探讨了分布式计算体系结构的演变,包括数据并行性,模型并行性和管道并行性及其混合实现。该研究深入研究了对大规模训练至关重要的优化技术,例如分布式优化算法,梯度压缩和自适应学习率方法。我们研究了沟通效率高的算法,包括戒指所有减少变体和分散培训方法,这些方法应对分布式系统的可伸缩性挑战。研究研究了硬件加速度和专业系统,重点是GPU群集,自定义AI加速器,高性能互连以及针对深度学习工作负载的优化的分布式存储系统。最后,我们讨论了该领域的挑战和未来方向,包括可伸缩性效率折衷,容错性,大规模培训中的能源效率以及新兴趋势等新兴趋势,例如联合学习和神经形态计算。我们的发现突出了高级算法,专业硬件和优化的系统设计之间的协同作用,以突破大规模深度学习的边界,为未来的人工智能突破铺平了道路。关键字:分布式计算,深度学习加速,高性能系统,通信 -
考虑各种设计、运行条件和环境因素的声学效应,有效计算垂直起降场环境中的城市空中交通噪声足迹,对于在早期阶段限制噪声对社区的影响至关重要。为此,作者在 Fuerkaiti 等人 (2022) [ 11 ] 中提出了计算效率高的低保真方法,并将其扩展为计算飞机在一般 3D 环境中的噪声足迹。直射线传播器被高斯波束追踪器取代,该追踪器考虑了复杂的源方向性、3D 变化地形拓扑和风廓线。作者在之前的研究中已经验证了高斯波束追踪器的可靠性。在本文中,它进一步扩展为包括存在移动介质时的复杂源方向性。使用低保真工具链获得的噪声源存储在围绕飞机的球体上,并通过不均匀的各向异性大气传播。比较了针对不同地形拓扑结构、源方向性和风流条件预测的噪声足迹。结果表明,与平坦地形相比,对于所研究的情况,由于多次反射,建筑块在照明区域中使地面噪声水平增加了 5 dB;它们还通过在建筑物后面创建阴影区来屏蔽传入的声场。在静止的大气中,屏蔽作用随着频率的增加而增强。 变化