先进的脑成像分析方法,包括多元模式分析 (MVPA)、功能连接和功能对齐,在过去十年中已成为认知神经科学的有力工具。这些工具以自定义代码和单独的程序包实现,通常需要不同的软件和语言能力。虽然专家研究人员可以使用,但新手用户面临着陡峭的学习曲线。这些困难源于使用新的编程语言(例如 Python)、学习如何将机器学习方法应用于高维 fMRI 数据以及极少的文档和培训材料。此外,大多数标准 fMRI 分析包(例如 AFNI、FSL、SPM)侧重于预处理和单变量分析,在如何与高级工具集成方面存在空白。为了满足这些需求,我们开发了 BrainIAK (brainiak.org),这是一个开源 Python 软件包,它将几种尖端的、计算效率高的技术与其他 Python 包(例如 Nilearn、Scikit-learn)无缝集成,用于文件处理、可视化和机器学习。为了传播这些强大的工具,我们开发了用户友好的教程(Jupyter 格式;https://brainiak.org/tutorials/),以便更广泛地学习 BrainIAK 和 Python 中的高级 fMRI 分析。这些材料涵盖的技术包括:MVPA(模式分类和表征相似性分析);并行探照灯分析;背景连接;全相关矩阵分析;受试者间相关性;受试者间功能连接;共享响应建模;使用隐马尔可夫模型进行事件分割;以及实时 fMRI。对于长时间运行的作业或大内存需求,我们提供有关高性能计算集群的详细指导。这些笔记本已在多个站点成功测试,包括作为耶鲁大学和普林斯顿大学课程的问题集以及各种研讨会和黑客马拉松。这些材料是免费共享的,希望它们成为开源软件和教育材料池的一部分,用于大规模、可重复的 fMRI 分析和加速发现。
语境性是量子力学 (QM) 的一个重要的非经典属性,自 20 世纪 60 年代以来就一直在研究 [1, 2],而该领域的最新进展与量子信息处理有关。研究这一问题的一个工具是稳定器形式主义 [3],特别是稳定器状态表表示 (SSTR) [4],它捕捉了量子理论中稳定器子理论的语境行为。它被广泛用于量子误差校正,也是研究量子优势特性的起点。一个典型的问题是,需要在稳定器量子理论中添加什么才能实现量子优势。然而,SSTR 不是本体论模型,而是稳定器子理论中量子态的表示,在内存和计算复杂度上是二次的。一个有趣的问题是,是否可以找到一个计算效率高的本体论模型,更具体地说是一个结果确定性模型。然后可将其用于研究量子优势与本体模型相比而非与稳定器 QM 相比的属性。目前已知的结果确定性模型要么是非语境化的,要么是指数级复杂度。也许最著名的是 2007 年 Spekkens 的玩具理论 (STT) [5],该理论将量子位建模为存在于四种离散本体状态之一中,同时将 Y 的预测测量结果与 X 和 Z 的测量结果联系起来。尽管 STT 是非语境化的,但它仍然可以重现许多量子现象。这成为 8 状态(立方体)模型 [6, 7] 的垫脚石,其中为每个量子位引入了一个额外的自由度,“将 Y 与 X 和 Z 分离”。另一个扩展是量子模拟逻辑 (QSL) [8, 9],见下文。 2019 年,Lillystone 和 Emerson [10] 提出了稳定子理论的上下文 ψ 认知模型,该模型具有结果确定性,但记忆复杂度呈指数增长,这是因为为每个 Pauli 算子分配了一个明确的相位值。还提出了另一种模型,该模型在记忆中是二次的,但该模型不再具有结果确定性。在本文中,我们借鉴了这些先前的努力,以实现我们的目标:
需要特定的c c类型的转换类型,这些转换不是天然发生的。5为了利用这些过程中的巨大酶良好的益处,已经设计了人工酶来产生新的催化反应性。6 - 8个促酶,从而产生基本的酶,然后可能会受到定向进化的能力,以实现通常与酶催化相关的高活性和选择性。9,10然而,尽管有明显的进展,但大多数人促酶的催化效率尚未与天然酶相媲美。11迄今为止,使用人工酶的大多数定向进化运动仅针对催化中心近距离的残留物,以直接影响其化学环境。越来越清楚的是,就像天然酶一样,整个蛋白质的12个结构合作也需要与人工酶促进酶进行催化。例如,刘易斯和同事观察到在模型环丙烷化反应中,在引入脱离活性位点的突变后,由人工hodios的模型环化反应提高了对映选择性。13 o s,远端突变的引入产生由蛋白质的先天结构动力学决定的细微结构重排,该结构动力学已在天然酶的进化中被逐渐构成。18,19是Hilvert等人设计的KEMP消除酶HG3.17的局部示例。14,15那些可以间接地通过调节结构动力学的催化活性的残基称为动力学的远端位点或热点。16,17针对定向演化算法中这些热点的16,17可以将构象动力归为催化生产构象,从而导致高度效率高的设计师酶。能够通过开发具有催化能力的构象合奏的速率加速度提高10 8倍。20当前,它们的鉴定阳离子o cen依赖于广泛的分子动力学(MD)模拟,这对工作的吞吐量构成了显着的限制。21尽管最近已经描述了基于机器的新策略并保持了大大减轻计算费用的希望,但对大型培训数据集的需求阻碍了他们在鲜为人知的系统中的应用。为了确定远端突变和远距离网络在人工酶中的作用,我们以23,24的lactocococococcal多药耐药性调节剂(LMRR)为示例,是探讨了以较广泛的新型到Nature Adectivitivitivities量身定制的混杂蛋白SCA效率的示例。该蛋白质属于padr遗传因素的PADR家族,并调节乳酸乳酸菌中LMR操纵子的表达。lMRR的特征是独特的构象thimational质量和结构可塑性25,26,在其大型恐惧孔中引起了宽阔的配体滥交。然后将这些基本酶定向进化,从而导致专业酶显着增加活性和(对映)的选择性。引入各种人工催化部分,金属复合物,27个非典型氨基酸(NCAA),28甚至两者均为29个具有多种新型催化性活性的endow LMRR。但是,迄今为止,迄今为止,定向进化仅集中在孔内的残基上,以优化新创建的活性位点的结构。在这里,我们展示了如何通过利用LMRR的构象动力学来进一步增加这些设计师酶之一的活性。
是计算机科学和运筹学中最基本的问题之一。在过去的半个世纪里,人们致力于开发时间高效的线性规划求解器,例如单纯形法 [23]、椭球法 [44] 和内点法 [41]。近几年,利用内点法 (IPM) 加速线性规划求解得到了深入研究 [20, 55, 13, 35, 65, 25, 71]。当 m ≈ n 时,最先进的 IPM 运行时间为 O(m2+1/18+mω),当 m≫n 时,运行时间为 O(mn+n3)。为了实现这些令人印象深刻的改进,大多数此类算法利用随机和动态数据结构来同时维护原始解和对偶解。虽然这些算法在时间上是高效的,但它们不太可能以空间高效的方式实现:维护原始对偶公式需要 Ω(m + n2) 空间,当 m ≫ n 时尤其不能令人满意。在本文中,我们研究了在流式模型中求解线性规划的问题:在每一遍中,我们可以查询 A 的第 i 行和 b 的对应行。目标是设计一个既节省空间又节省遍历次数的 LP 求解器。所谓高效,我们的目标是获得一种不依赖于 m 的多项式的算法,或者更具体地说,我们提出一个健壮的 IPM 框架,该框架仅使用 e O(n2) 空间和 e O(√n log(1/ϵ)) 次遍历。1据我们所知,这是实现与 m 无关的空间和遍历最高效的流式 LP 算法。目前最好的 LP 流式算法要么需要 Ω(n) 次传递,要么需要 Ω(n2+m2) 空间来进行 O(√n) 次传递。对于高密集 LP(m≫n)的情况,我们的算法实现了最佳空间和传递。获得这些 LP 算法的关键因素是从时间高效的原始对偶 IPM 转变为时间效率较低的仅对偶 IPM [64]。从时间角度来看,仅对偶 IPM 需要 e O(√nlog(1/ϵ)) 次迭代,每次迭代可以在 e O(mn+poly(n)) 的时间内计算完成。然而,它比原始对偶方法更节省空间。具体而言,我们表明每次迭代,只需维护一个 n×n 的 Hessian 矩阵即可。为了获得 e O ( √ n log (1 /ϵ )) 次传递,我们证明了诸如 Lewis 权重 [ 56 , 21 ] 等非平凡量可以以仅使用 e O ( n 2 ) 空间的就地方式递归计算。既然我们有了用于流式模型中一般 LP 的空间和传递效率高的 IPM,我们将使用半流式模型中的图问题应用程序对其进行实例化。在半流式模型中,每条边及其权重都以在线方式显示,并且可能受到对抗顺序的影响,并且算法可以在 e O ( n ) 空间中对流进行多次传递。2我们特别关注最大权重二分匹配问题,其中带有权重的边以流式传输给我们,目标是找到一个匹配,使其中的总权重最大化。虽然对这个问题的研究已经很多([ 2 , 36 , 24 , 3 , 9 ] 等),但大多数算法只能计算近似匹配,这意味着权重至少是最大权重的 (1 − ϵ )。对于精确匹配的情况,最近的一项研究 [ 6 ] 提供了一种算法,它取 n 4 / 3 + o (1)
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠且有效的气动弹性模型,该模型应能够将结构和气动部分耦合在一起。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力板和涡流模型 7 旨在提供改进的尾流建模;然而,它们都各有弱点,前者由于需要求解 Navier-Stokes 方程而计算量大,而后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析受到了广泛关注,尽管目前显示它对于大攻角不可靠。9 此外,它们的适用性仍然受到计算需求增加的限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注不稳定性问题、复杂的流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人提出了使用改进的条带理论进行气动弹性分析。11 同时还提出了一种基于谐波平衡法的气动弹性方案,12 显著缩短了计算时间,并且比标准 BEM 方法更为稳健。通过使用三维模型进行数值研究,进一步研究了冰积对叶片气动行为的影响。 13最后,Peeters 等人。39 最后,一类更复杂的方法涉及基于 CFD 的分析,9,14 事实证明,这些方法与标准工业工具(例如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。关于结构模型,还提出了超出标准方法(包括等效梁的构造)15 的方法,包括薄壁梁模型 16 ,它可以适应大型叶片中遇到的大多数特征,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在大量可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型柔性叶片则并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性而产生的耦合效应变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商业模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决 WT 叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 本质上提供了变形梁几何的精确表示,这对于较大的 WT 来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。该方法被证明具有显著的计算效率,从而能够与结构监测数据相结合以供实时应用。31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法可以减轻计算成本的增加,即使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠、有效的气动弹性模型,该模型应能够将结构部分和气动部分耦合。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力面板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力面板和涡流模型 7 旨在提供改进的尾流建模;然而,两者都各有弱点,前者需要求解 Navier-Stokes 方程,计算量大;后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析正受到广泛关注,尽管目前已发现其对于大攻角不可靠。9 此外,由于计算需求的增加,它们的适用性仍然受到限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。 Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注了不稳定性问题、复杂流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人 11 提出了使用改进的条带理论进行气动弹性分析,同时还提出了一种基于谐波平衡法的气动弹性方案,12 大大减少了计算时间,并且证明比标准 BEM 方法更为稳健。13 通过使用三维模型进行数值研究,进一步研究了结冰对叶片气动行为的影响。一类更复杂的方法是基于 CFD 的分析,9,14 事实证明,这种方法与标准工业工具(如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。对于结构模型,除了标准方法(包括等效梁的构造)之外,还提出了其他方法,15包括可以适应大型叶片中遇到的大多数特征的薄壁梁模型 16,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片来说可以忽略不计,但对于大型柔性叶片来说并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,