荒野地区的传统搜索和救援方法可能很耗时,并且承保范围有限。无人机提供更快,更灵活的解决方案,但是优化其搜索路径对于有效操作至关重要。本文提出了一种新型算法,使用深厚的增强学习,以在荒野环境中为无人机创建有效的搜索路径。我们的方法利用概率分布图的形式利用了有关搜索区域和失踪人员的先验数据。这使策略可以学习最佳的飞行路径,以最大程度地提高找到失踪人员的可能性。实验结果表明,与传统的覆盖计划和搜索计划算法相比,我们的方法在搜索时间方面取得了重大改进,这一差异可能意味着在现实世界中的搜索操作中,与以前的工作不同,我们的方法在现实世界中的搜索操作中,我们的方法还包含了近距离的行动空间,从而使群落启用了更多的细微差别飞行模式。
摘要 - 搜索和救援行动中无人机的有效路径优化面临挑战,包括有限的可见性,时间限制和城市环境中的复杂信息收集。我们提出了一种全面的方法,可以利用3D AirSim-Ros2模拟器和2D模拟器,用于基于无人机的搜索和救援操作。路径计划问题被提出为部分可观察到的马尔可夫决策过程(POMDP),我们提出了一种新颖的“缩小POMCP”方法来解决时间限制。在Airsim环境中,我们将我们的方法与信仰维护的概率世界模型和避免障碍物的神经玫瑰花型导航器相结合。2D模拟器采用具有等效功能的替代ROS2节点。我们比较了2D模拟器中不同方法产生的轨迹,并评估3D Airsim-Ros模拟器中各种信念类型的性能。两个模拟器的实验结果表明,与替代方法相比,我们提出的缩小POMCP解决方案在搜索时间方面取得了重大改善,展示了其提高无人机辅助搜索和救援操作效率的潜力。索引条款 - 搜索和救援,POMDP,MCTS
•可互操作的卫星数量大量•全局覆盖范围•实时检测和位置•单次突发检测和位置•近实时检测•新功能(例如galileo rls)
摘要:这种基于无人机的监视系统通过引入主动监测和实时数据传播,提出了针对洪水管理挑战的开创性解决方案。配备了高分辨率摄像头和GPS功能,专门无人机不断监视受洪水影响的地区,为救援团队提供有关精确洪水水平和遇险个人确切的GPS位置的重要信息。这项创新使救援团队有能力做出明智的数据驱动决定,并根据情况的严重性优化回答。该解决方案通过其动态适应性来区分自己。在高液场的情况下,该系统建议部署船只进行疏散,而在低液体情况下,采用了替代性救援方法。根据实时人口数据,动态调整救援团队成员数量的能力最小化了响应时间,从而降低了洪水受害者和救援队的伤亡风险。这种全面而主动的方法改变了传统的反应性模型,增强了整体灾难管理的效力,并努力减少洪水紧急情况下的死亡。
可持续发展目标远离2030年截止日期的中途,许多国家都落后于全球承诺。慢慢的进步加剧了19日的大流行,冲突,粮食和能源价格上涨以及与气候相关的灾难。已经记录了一些成功,例如减少极端贫困和儿童死亡率,性别平等的改善和获得电力。但是,许多其他人偏离了轨道,甚至倒退了。只有140个具有数据的可持续发展目标目标中只有12%;接近一半的中度或严重偏离了轨道,大约30%的人没有在2015年基线以下的移动或回归。Cities拥有实现可持续发展目标的关键,该HLPF的主题正在加速Covid-19的复苏,并在所有层面上全面实施2030年可持续发展议程。联合国秘书长呼吁为可持续发展目标制定救援计划,很明显,任何此类计划都需要将城市和城镇放在前面。今天,世界一半以上的人口居住在城市,到2050年,每10人中有7人将居住在城市地区。作为全球大多数人口的主机,城市对可持续发展目标的实现有重大影响,而将近三分之二的可持续发展目标目标具有城市组成部分。
NUSTL 负责管理应急响应人员系统评估和验证 (SAVER) 计划,该计划提供有关市售设备的信息,以协助响应组织进行设备选择和采购。SAVER 知识产品提供有关 DHS 授权设备清单 (AEL) 所列类别的设备的信息,主要关注响应者社区的两个主要问题:“有哪些设备可用?”和“设备性能如何?”SAVER 计划与响应者合作,对市售应急响应设备进行客观、与实践者相关、以操作为导向的评估和验证。拥有合适的工具可以为响应者提供更安全的工作环境,并为他们服务的人提供更安全的社区。
搜索和救援 (SAR) 行动是指一组训练有素的专业人员在特定区域搜寻并帮助失踪人员的任务。目前在丹麦,SAR 行动由丹麦国防部下属的政府机构丹麦紧急事务管理局 (DEMA) 1 负责。在传统的 SAR 行动中,紧急救援人员被派出去搜寻失踪人员,然而,近代 SAR 行动涉及使用无人机。救援队加入无人机后,他们能够更快地在区域搜寻,并降低因派遣无人机到高危区域搜寻而危及紧急救援人员的风险。这篇硕士论文名为《搜索和救援中的无人机群用户界面设计》,我们在其中探讨了如何设计无人机群的用户界面以及控制无人机群的各种方法。我们开发了一个 Web 应用程序形式的原型,无人机操作员可以同时控制多架无人机。增加了对控制实体无人机的支持,这增加了研究参与者使用原型时的真实感。它为无人机操作员提供了使用三种方法控制无人机的能力:
Estimated Effects on the Deficit 1,163,526 528,524 114,311 59,041 32,105 -6,080 -10,915 -3,928 -7,685 -13,301 -11,491 1,855,603 1,844,112 On-Budget Deficit 1,163,625 528,773 115,084 59,682 32,845 -5,237 -10,008 -3,036 -6,766 -12,434 -10,706 1,862,533 1,851,827 Off-Budget Deficit -99 -249 -773 -641 -740 -843 -907 -892 -919 -867 -785 -6,930 -7,715
船舶损失。1 此外,死亡和受伤与海上所有人有关,无论是海员、乘客、移民还是其他人。即使是现代远洋船舶也难免发生事故,正如 Costa Concordia 号邮轮事故中 32 人死亡所表明的那样。2 更危险的是质量不合格的船只,它们通常挂着方便旗,被鲁莽的船主用来最大化商业利益。3 这些船只如果被用来偷运移民,就会变得特别危险,地中海发生的许多事件就证明了这一点。每天都有移民死于地中海。4 在一个广为人知的例子中,一艘载有 72 人的小型充气橡皮艇在地中海搁浅了 15 天,然后被冲到利比亚岸上。在那几天里,一架军用直升机、一艘大型军舰和其他各种船只靠近了这艘橡皮艇,但没有一艘去营救船上的人。 5 由于缺乏援助,小艇上最初有六十多人,只有十人幸存。
历史上首次成功开发并进行了现场测试,一种科学合理且实用的方法可以客观地确定陆地环境中对搜索和救援 (SAR) 重要物体的检测概率。使用志愿搜索者收集数据并使用简化的分析技术进行分析,所有成本都非常低。这项工作为解决搜索规划和评估问题打开了大门,这些问题在陆地 SAR 社区中已经激烈争论了近 30 年,但从未得到解决。搜索本质上是一个概率过程,无法保证成功或失败。搜索仍然是一项重大挑战,尤其是在生命受到威胁时。但是,使用正确的工具和概念进行精心计划的搜索更有可能成功,而且同样重要的是,当生命受到威胁时,成功会更快。规划搜索包括评估所有可用信息,然后,由于通常不可能一次性在所有地方进行彻底搜索,因此需要决定如何最好地利用可用的、通常有限的搜索资源。由于“所有可用信息”还包括任何已完成的未成功搜索,因此需要适当核算一般搜索区域的各个部分或子部分的搜索效果。这将成为规划失踪人员后续搜索活动的输入。对于搜索前规划和搜索后评估,搜索规划人员必须能够客观地估计在给定资源和努力程度下在给定搜索区域部分中发现给定物体的概率。检测概率 (POD) 取决于努力程度、部分大小以及检测搜索对象的难易程度。检测的难易程度又取决于所使用的传感器(通常是肉眼)、所寻找物体的性质(大小、颜色等)以及搜索时和搜索地点的环境(地形、植被、天气等)。虽然陆地搜索的规划者通常知道他们在搜索什么、他们有哪些可用资源以及资源将要或已经发送的部分的大小和环境特征,但他们无法量化搜索者在检测搜索对象时的难易程度。有效扫描宽度可以被视为一种将所有因素都考虑在内的“可检测性指数”。这使得他们没有客观的方法来估计 POD,并在过去 30 年中有效地阻碍了将陆地 SAR 搜索规划置于更科学的基础上的尝试。规划人员被迫要么在没有可靠数据的情况下做出主观的 POD 估计,要么依靠搜索者自己的更主观的估计。量化“可探测性”的最简单指标是一个称为“有效扫描(或搜索)宽度” (ESW) 的值。这个概念将影响给定搜索情况下检测的所有因素(传感器、环境、搜索对象)的综合影响降低为一个表征该情况下搜索对象“可探测性”的单个数字。它不应被视为传感器之间的“宽度”或间距。不幸的是,有效扫描宽度无法直接测量。有必要进行检测实验并从中减少数据。该项目的目标是: