摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
TODD Murphey机械工程物理疗法和人类运动科学中心西北大学TODD Murphey机械工程物理疗法和人类运动科学中心西北大学
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
................................................................................................................................................................ 124 自定义组件编辑器 ...................................................................................................................................................................... 126 设计电阻(组件) ...................................................................................................................................................................... 128 设计电容器 ...................................................................................................................................................................... 134 设计 VCC 和 GND 符号 ............................................................................................................................................................. 137 设计多部分组件 ...................................................................................................................................................................... 145 使用附加字段 ...................................................................................................................................................................... 147 设计 PIC18F24K20 ............................................................................................................................................................. 154 SPICE 设置 ...................................................................................................................................................................... 155 库验证 ............................................................................................................................................................................. 157 放置部件
太阳能航行是一种革命性的驱动航天器的方式。太阳帆(图3)使用大型,轻巧的镜面表面,以捕获从阳光下的动量,以将航天器向前推动。光由称为光子的无质量颗粒组成。光子在撞击其反射表面时将其动量(复数)转移到航天器中。就像在离子推进器中一样,每一个击中帆的光子都可以产生一个小的推力。Starshot Mission将使用太阳能航行前往我们太阳系Alpha Centauri最近的星系。
本文的目的是对广义特征组成(GED)提出理论和实用的介绍,这是用于降低尺寸和源源分离多通道信号处理中的强大而灵活的框架。在认知电生理学中,GED用于创建空间过滤器,以最大程度地提高研究人员规定的对比。例如,人们可能希望利用一个不同的来源具有不同的频率含量,或者来源在实验条件下的大小变化。GED快速易于计算,在模拟和真实数据中表现良好,并且易于适应各种特定的研究目标。本文以一种将GED联系在一起的方式介绍了GED,该方式将GED在电生理学中的众多个人出版物和应用联系在一起,并提供了可以测试和调整的样品MATLAB和PYTHON代码。在应用中经常出现的实际考虑和问题。
Ludovic Duponchel,CécileFabre,Bruno Bousquet,Vincent Motto-Ros。在Libs Specy-troscopy框架中进行定量分析和分类的预测模型的统计比较:教程。SpectroChimica Acta B部分:原子光谱学,2023,208,pp.106776。10.1016/j.sab.2023.106776。hal-04191568
备注2。几类非平滑机器人系统(双皮动力[4,25,26,27,27,28,29,29,30,71,72],操纵[16,17,24,73,74,74,75,76,9,77],带有清理的系统,共同的机器人[78,79],跳高机器人[33],PUSTRIPS ISS [80]蛇机器人[36],电缆驱动的操纵器[46,47],带内转子的球形机器人[83])已经是自动控制或机器人文献中调查文章的对象。因此,再次彻底调查它们的范围不在本文的范围之内,因为这将产生重复和太多参考文献(大概数千个)。因此,我们对本文主要目的的参考文献感到满意。不足的系统也是引起很多关注的对象[84、85、86、87],但是这些调查文章中未包括机器人对象系统(1)([87]除外,很快就会审查其中的一些)。
动态治疗方案是一系列根据个人随着时间的流逝而不断发展的状态量身定制的治疗决策规则。在精确医学中,已经非常重点放在寻找最佳的动态治疗方案上,如果人口中的每个人都跟随,平均将产生最佳结果。从方法论和应用的角度进行了广泛的研究。本教程的目的是为那些对最佳动态治疗方案感兴趣的读者,具有系统的,详细但易于访问的介绍,包括在因果推理的框架内对该主题的正式定义和表述,确定假设,将兴趣的因果量链接到现有数据和估算方法的现有统计模型和实际方法以及数据和数据的现有方法和数据以及这些方法和数据的现有方法和数据以及这些方法和数据的实际方法以及这些方法以及这些方法和数据的实际方法。
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。