Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。 他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。 他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。 最近,他主要进行了有关人类计算机视力评估的研究。 他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等))Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。最近,他主要进行了有关人类计算机视力评估的研究。他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等)使用在线评估平台。他定期担任以下会议和期刊的计划委员会成员或同行审稿人:CVPR,ICCV,ECCV,ICML,ICML,Neurips,ICLR,IJCV,IEEE TPAMI,IEEE TPAMI,IEEE TIP,IEEE TMM,IEEE TMM等
硝化化合物,在许多工业应用中被广泛用作必需的化学中间体,由于其致癌性,诱变性和致病性特性而构成了明显的环境和健康风险。这些化合物是最持久的污染物之一,为环境修复提供了主要的挑战。传统的去除方法,例如吸附,臭氧化,生物修复和电化学过程,是有效的,特别是对于大规模应用。室温催化减少的最新进展是一种有希望的替代方案,这主要是由于其有效性和所得产物的相对较低的氨基苯酚(AP)的毒性相对较低,这是一种有价值的化学物质。近期对工业废水的全面利用引起了极大的兴趣。因此,探索相关的还原技术,包括在水性生态系统中含有有害物质的废物的回收,不仅是最基本的环境问题,而且对经济绩效至关重要。氮气减少的传统方法o c涉及使用有毒试剂和高能消耗的过程,这会带来显着的环境危害。审查确定了当前理解中的重要差距,例如氢源在还原过程中的确切作用,并强调了该领域进一步探索的必要性。这些进步有可能改善工业过程的经济生存能力和环境可持续性,特别是在废水回收和减少污染的背景下。发展高度有效的可持续催化剂对于选择室温催化减少技术至关重要,这不仅解决了与危险的硝化化合物有关的环境问题,而且对工业废水管理的更广泛挑战有助于。
您可以使用安装在 Windows* 主机上的 Intel ® System Studio 来识别和分析目标 Windows 系统的能源使用情况。Intel System Studio 的 Intel Energy Profiler 功能使用目标系统上的 Intel SoC Watch 收集器来分析目标系统的功率和能耗。通过 Intel SoC Watch 收集器收集的数据可以导入主机系统上的 Intel VTune ™ Amplifier for Systems,以可视化结果并了解目标系统的能源使用情况。本教程将指导您完成使用 Intel SoC Watch 收集器收集能源数据并在 VTune Amplifier for Systems 中查看数据所需的工作流程步骤。
- 或语句::在AN或命令中,只有1个侧面才能实现,以执行随附的代码。在寻找超出特定范围的东西或查看是否从多个选项中按下一个按钮(即建筑物内的紧急灭火站)示例:超出范围:寻找小于60或大于100
在本周的教程中,我们将开始考虑将“现实世界”概率建模为增强学习问题。i引用“现实世界”,因为我们将在学术界典型地求助于所谓的“玩具问题”。部分是因为它们更易于编写,并且更容易限制范围。的一部分是因为它允许我们将可控制的孔戳入问题中,并使局限性和假设更加清晰。与您没有潜在的考虑(尤其是从您的日常经验中造成更现实的问题),这会触发许多我们不能总是预测的个性化思想),而是一次介绍给他们。,当您从一开始就接受它是“故事”而不是完全现实时,您可以专注于我们试图交流的内容要容易得多。
说明:此利用计划必须包含根据合同所提供的每个NYS认证的少数民族和妇女拥有的商业企业(MWBE)提供的供应和/或服务的详细说明。通过提交该计划,投标人/承包商承诺根据MWBE分包商,供应商和经销商的使用,按照招标/合同中包含的MBE/WBE目标的要求进行真诚努力。做出虚假陈述或包含信息,证明缺乏真诚或与之结合的信息,法律禁止使用利用计划的一部分或结合使用,并可能导致罚款,包括但不限于终止合同的损失,有资格的损失,有资格提交未来的竞标和/或与支付的持有。不执行商业有用功能的公司可能不计入MWBE利用率。必要时附加额外的床单。投标人/承包商信息MWBE目标在合同投标人/承包商名称中:NYS供应商ID:MBE%
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
摘要 — 只要妥善处理太空环境带来的延迟和中断挑战,太空互联网就有可能实现。由于地面互联网无法很好地解决这些问题,因此正在开发更强大的延迟容忍网络 (DTN) 协议和算法。特别是,近地轨道和深空地面元素和航天器之间的路由原则和技术是在接触图路由 (CGR) 框架中制定的。CGR 融合了一组非平凡算法调整、空间操作概念、时间动态调度和特定图形模型。该框架的复杂性表明需要进行重点讨论,以促进对其的直接和正确理解。为此,我们提供了一个深入的教程,收集和组织有关研究、开发、实施和标准化 CGR 的第一手经验。内容以考虑规划、路线搜索和管理以及连接地面和太空领域的转发阶段的结构进行布局。我们依靠直观的图形示例、支持代码材料以及对飞行级 CGR 实施细节的引用(如适用)。我们希望本教程能够成为工程师的宝贵资源,并且研究人员也可以将此处提供的见解应用于 DTN 研究主题。
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
量子计算 (QC) 以成熟的理论计算模型 [1]、[2]、[3]、[4] 为基础,具有超越最强大的传统计算机能力的巨大潜力。基于云的 [5]、[6]、[7]、[8]、[9] 嘈杂中型量子 (NISQ) [10] 计算机的出现,加上关键 QC 工具流的最新增强 [11]、[12]、[13]、[14]、[15]、[16]、[17],使得量子计算能够在各种应用和平台上展示量子优势 [18]、[19]、[20]、[21]、[22],甚至在实现容错之前。随着量子比特数的不断增加和量子计算机保真度的不断提高,它们执行创新算法和产生敏感知识产权的潜力变得越来越引人注目。在这种背景下,量子计算系统的安全性至关重要,因为不安全的量子计算系统不仅会危及用户,还会对我们更广泛的社会构成重大风险。然而,目前明显缺乏系统的研究来应对不断变化的量子威胁形势、探索潜在的漏洞以及建立强有力的对策来保护量子系统的完整性及其处理的敏感信息。在本文中,我们迈出了第一步,提供了一个全面的教程和调查,重点是识别和分类量子计算系统固有的漏洞。我们的最终目标是为安全的量子计算环境奠定坚实的基础。本文是朝着这一目标迈出的第一步,它积极阐明了量子安全威胁的形势,使行业利益相关者和研究界都受益。