2.1 网站链接地址....................................................................................................................................................................3 2.2 “免费空间数据”链接地址....................................................................................................................................................4 2.3 “国家级数据”链接地址....................................................................................................................................................4 2.4 选择国家下载 Shape 文件....................................................................................................................................5 2.5 选择“行政数据”......................................................................................................................................................5 2.6 下载 Shape 文件。 . ... . ...
晶体硅 • 多晶硅生产 • 硅锭和硅片:直拉法 (Cz)、定向凝固 (DS)、无切口技术,可生产 Cz 和 DS 等效物 • 电池转换:通过丝网印刷、电镀和无主栅技术生产单面和双面 PERC、PERT、HJT 和 IBC • 模块组装:标准接线和串接、无主栅和叠瓦
• 对于基因敲除,gRNA 通常靶向 5' 组成性表达的外显子,这降低了由于可变剪接而从 mRNA 中移除目标区域的可能性。 • 根据经验,避免靶向编码蛋白质 N' 末端附近氨基酸的位点,以减轻细胞使用注释起始密码子下游的替代 ATG 的能力。同样,避免靶向编码蛋白质 C' 末端附近氨基酸的位点,以最大限度地增加产生无功能等位基因的机会。对于 1 千碱基基因,由于潜在靶向位点每 8 个核苷酸中出现约 1 个,将 gRNA 限制在蛋白质编码区域的 5 – 65% 仍将导致有数十种 gRNA 可供选择。有这么多可能性,选择具有优化序列的 gRNA 是首要任务。 • 如果可能,设计 gRNA 以靶向编码已知必需蛋白质结构域的外显子。这种方法的好处是,即使非移码等位基因在重要的蛋白质结构域中出现时也可能改变蛋白质的功能。
• 登录您的仪表板 • 单击“我的 eplans”(房主)或“计划”(承包商) • 如果是房主,请单击与项目相关的详细信息按钮 • 如果是承包商,请单击与该特定计划相对应的“重新提交”按钮。
您可以使用安装在 Windows* 主机上的 Intel ® System Studio 来识别和分析目标 Windows 系统的能源使用情况。Intel System Studio 的 Intel Energy Profiler 功能使用目标系统上的 Intel SoC Watch 收集器来分析目标系统的功率和能耗。通过 Intel SoC Watch 收集器收集的数据可以导入主机系统上的 Intel VTune ™ Amplifier for Systems,以可视化结果并了解目标系统的能源使用情况。本教程将指导您完成使用 Intel SoC Watch 收集器收集能源数据并在 VTune Amplifier for Systems 中查看数据所需的工作流程步骤。
通过 EPIC-LA 教程申请回收和再利用计划 EPIC-LA 允许申请人以数字方式提交信息,以满足机构推荐表上的许可。现在可以通过 EPIC-LA 获得“建筑和拆除碎片回收和再利用计划”的许可。为此,请按照以下说明在 EPIC-LA 网站上申请回收和再利用计划。 1. 访问 https://www.epicla.lacounty.gov 2. 单击“登录或注册” 3. 使用您注册的电子邮件/用户名和密码登录。这应该是相同的信息
- 它可以帮助系统工程师评估系统需求,并了解主要子系统,例如电池,DC/DC转换器,牵引电机和控制器,发电机和控制器,发动机和车辆负载。- 它可以帮助子系统工程师得出子系统的详细硬件和软件规格,并更好地了解子系统的运营。- 它可以帮助硬件工程师进行硬件组件选择和设计,并帮助软件/控制工程师开发控制算法和DSP控制软件。- 它可以帮助系统集成工程师根据系统和子系统要求整合和测试系统。
抽象的X射线衍射(XRD)是表征电杂色材料薄膜的必不可少的工具。但是,对于初学者而言,由于操作模式和测量类型的数量以及对结果模式和扫描的解释,首先可能是一种艰巨的技术。在本教程文章中,我们为使用XRD进行首次测量的薄膜工程师/科学家提供了基础。我们简要介绍了该仪器的衍射原理和描述,详细介绍了相关的操作模式。接下来,我们引入了薄膜表征必不可少的五种测量值:2次扫描,放牧的含量扫描,摇摆曲线,极图和方位角扫描(或ϕ扫描)。提供了选择适当的光学元件,安装和对齐样品以及选择扫描条件的实用准则。最后,我们讨论了数据分析的一些基础知识,并就数据呈现提供了建议。本文的目的是最终降低研究人员进行有意义的XRD分析的障碍,并在基础上建立基础,发现现有文献更易于访问,从而实现了更高级的XRD调查。
稿件于 2022 年 1 月 27 日收到;于 2022 年 3 月 15 日接受。出版日期 2022 年 3 月 21 日;当前版本日期 2022 年 5 月 27 日。这项工作部分由中国国家重点研发计划资助(资助号 2019YFB1310000),部分由中国澳门科学技术发展基金资助(文件编号 0052/2020/AGJ & SKL-AMSV(UM)-2020-2022)。副主编 E. Bonizzoni 推荐了这篇简介。(通讯作者:Sai-Weng Sin。)Mingqiang Guo 和 Sai-Weng Sin 就职于澳门大学模拟与混合信号超大规模集成电路国家重点实验室、微电子研究所和 FST-ECE(电子邮件:mqguo@um.edu.mo;terryssw@um.edu.mo)。 Liang Qi 和 Guoxing Wang 就职于上海交通大学微纳电子学系,上海 200240,中国(电子邮件:qi.liang@sjtu.edu.cn;guoxing@sjtu.edu.cn)。Dengke Xu 就职于珠海安微半导体有限公司,珠海 519000,中国(电子邮件:sunny.xu@amicro.com.cn)。Rui P. Martins 就职于模拟与混合信号超大规模集成电路国家重点实验室、微电子研究所和澳门大学 FST-ECE,澳门,中国,现就职于里斯本大学高等技术学院,里斯本 1049-001,葡萄牙(电子邮件:rmartins@um.edu.mo)。本文中一个或多个图片的彩色版本可在 https://doi.org/10.1109/TCSII.2022.3160736 上找到。数字对象标识符 10.1109/TCSII.2022.3160736
本教程的目的是对线性量子控制系统进行简要介绍。首先介绍线性量子控制系统的数学模型,然后给出一些基本的控制理论概念,例如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,例如无退相干子系统、量子非破坏变量和反作用规避测量。之后,介绍量子高斯态,特别是,介绍了一种信息论不确定性关系,它通常比众所周知的海森堡不确定性关系为混合高斯态提供更好的界限。介绍了量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的实验说明了其应用。由于单光子态和多光子态是量子信息技术中的有用资源,因此本文介绍了量子线性系统对这些类型输入的响应。最后,简要介绍了量子线性系统的相干反馈控制,并使用最近的实验证明了量子线性系统和网络理论的有效性。