棘阿米巴角膜炎 一种罕见但严重的视力破坏性角膜炎症,由污染水中的寄生虫引起。 调节 通过改变眼睛晶状体的形状来改变眼睛的聚焦能力,使近处物体的光线聚焦到视网膜上,从而在远处获得清晰的视野。 感觉计 测量角膜或眼睑边缘敏感度的仪器。 对准配戴 选择 *BOZR 使其与角膜表面平行的配戴技术。 缺氧 缺乏氧气。 角膜尖 角膜的顶端,通常位于瞳孔和视轴正上方。 无晶状体 白内障摘除后,眼睛的天然晶状体的缺失或丢失。 顶端间隙 隐形眼镜后表面与角膜顶端之间的距离。 顶端触痛 一种隐形眼镜配戴,通常是平的,镜片的后表面位于角膜顶端。非球面镜片 适用于边缘性散光患者和老花眼患者。 散光角膜切开术 一种通过将角膜从椭圆形重塑为更球形来矫正散光的外科手术。最适合散光轻度或中度的患者。 弱视 尽管已通过最佳的眼镜或隐形眼镜矫正,但单眼或双眼视力下降,且眼部结构无病变。是指大脑中与特定眼睛相对应的部分智力发育不良。 像差控制镜片 通过控制球面像差来改善视觉功能的隐形眼镜。 散光 一种屈光状况,角膜、晶状体或二者都是椭圆形而不是球形,并且光在所有子午线的折射并不相同。 高压灭菌器 一种使用压力蒸汽对隐形眼镜进行灭菌的腔室。自动板层角膜切除术一种针对极度近视患者的新手术,其中仅将受影响的角膜的一小部分与来自供体角膜的切片一起移植。
病例报告:该患者30多年前左眼曾接受过角膜内环段手术(ICRS),以矫正因扩张复发而导致的散光(2012年)。ICRS术后,患者的屈光散光度数从-9.00 D改善至-3.50 D,并保持稳定达8年。十年后,患者决定再次进行手术干预。当时的角膜内环段较小,位于瞳孔中心,且瘢痕处扩张。因此,我们决定进行DALK手术。在这些病例中,钻孔手术在原瘢痕外进行,以角膜缘和瞳孔为中心。然后,我们继续进行 Anwar 于 1974 年描述的去角膜后弹力层手动解剖,从钻孔边缘开始,目标是达到角膜中央 50 至 70 微米之间的去角膜后弹力层前平面,通过术中 OCT 或超声角膜厚度测量,然后继续向周边解剖。深层平面的解剖动作必须小心,避免在疤痕水平牵引。一旦达到中央水平的适当平面,我们必须越过 PK 的疤痕到达新钻孔的边缘,防止疤痕裂开并造成穿孔。一旦获得适当的平面,就要准备供体角膜并缝合。
• 眼镜、隐形眼镜、常规眼科检查或视力测试以开具或配戴眼镜或隐形眼镜,但上述和第 54 页所述情况除外 • 豪华眼镜架或眼镜或隐形眼镜的镜片功能,如特殊涂层、偏光、紫外线处理等。 • 多焦点、调节、散光或其他高级人工晶状体 (IOL),包括 Crystalens、ReStor 和 ReZoom • 眼保健操、视觉训练或视轴矫正,但上述弱视和斜视的非手术治疗除外 • LASIK、INTACS、放射状角膜切开术和其他屈光手术服务 • 屈光检查,包括在与特定医疗状况相关的眼科检查期间进行的屈光检查,但上述情况除外
弥漫性相关光谱(DC)是一种光学成像方法,可无创,连续地测量血流。它通过测量从组织中恢复的扩散光的斑点强度波动的时间自相关功能来量化血流指数。1 - 4组织动力学的变化导致时间自相关函数的衰减时间的变化。因此,DC可用于检测由神经活动引起的组织动力学。衰减时间的变化通常仅归因于脑血流的变化(CBF)。5,6 CBF的峰通常在神经元激活的开始时通常在几秒钟的时间延迟时发生,这是缓慢且不可行的,对于在诸如大脑 - 计算机接口等应用中的大脑激活中实时概念。
序言 1 第一章 医学与视力缺陷 3 第二章 视觉再教育的方法 6 第三章 感觉+选择+知觉=看 11 第四章 身体和心理功能的变异性 14 第五章 视觉功能障碍的原因:疾病和情绪障碍 17 第六章 放松 23 第七章 眨眼和呼吸 26 第八章 眼睛,光的器官 29 第九章 中心注视 33 第十章 训练眼睛和心理移动的方法 36 第十一章 闪光 40 第十二章 移动 43 第十三章 看的心理方面 48 第十四章 记忆和想象力 50 第十五章 近视 57 第十六章 远视、散光、斜视 61第十七章 一些难以观察的情况 66 第十八章 光照条件 71 附录一 74 附录二 76
o 顺运动 o 逆运动 ▪ 视网膜镜检查程序 ▪ 患者 ▪ 视力表 ▪ 折射仪/综合验光仪 ▪ 工作距离 ▪ 截距 ▪ 球镜/柱镜 ▪ 验证中性 ▪ 设置 ▪ 将患者置于综合验光仪后面 ▪ 看图表(不要看光线,不要看近处的任何物体,包括验光师) ▪ 与患者保持距离 ▪ 来回照射眼睛并观察反射 ▪ 截距 ▪ 在您正在中和的子午线对面划线 ▪ 顺运动:眼睛的负度数太多,增加正度数 ▪ 逆运动:眼睛的正度数太多,增加负度数 ▪ 光线超出瞳孔 ▪ 如果没有散光或不在轴上,则与反射对齐 ▪ 球镜/柱镜 ▪ 分别中和每个子午线 ▪ 验证中性 ▪ 中和后瞳孔充满光线。 ▪ 为了验证▪ 远离患者,您应该看到逆向运动。 ▪ 主观验光:起点
研究了相位像差及其对激光诱导击穿引起的流场发展的影响。使用可变形镜将相位像差施加到波长为 1064nm 的高能激光脉冲上。设计了一个实验装置来捕捉激光诱导击穿引起的流场运动,该装置着重于捕捉流场的横向轮廓和同轴轮廓。结果显示,由于非平面相的存在,火花吸收的激光脉冲能量 (181mJ) 显著降低,这是由于在通常发生击穿的焦平面中扩散所致。在收集的数据中,研究了 Zernike 0 ◦ 散光、Zernike Y-彗形像差和 Zernike 球面像差的单个实例。著名的 Horn-Schunck 光流法用于分析阴影图像,产生运动的密集光流场表示。结果表明,所研究的每种像差都会产生独特的流场,显示出超特定局部流规范的潜力,并进一步讨论了其含义。
本文介绍了一种新开发的基于物理的成像模拟器环境 SISPO 的架构和功能,该环境专为小型太阳系天体飞越和类地行星表面任务模拟而开发。该图像模拟器利用开源 3-D 可视化系统 Blender 及其 Cycles 渲染引擎,支持基于物理的渲染功能和程序微多边形位移纹理生成。该模拟器专注于逼真的表面渲染,并具有补充模型,可为彗星和活跃小行星生成逼真的尘埃和气体环境光学模型。该框架还包括用于模拟最常见图像像差的工具,例如切向和矢状散光、内部和外部彗形像差以及简单的几何畸变。该模型框架的主要目标是通过更好地模拟成像仪器性能表征、协助任务规划和开发计算机视觉算法来支持小型太空任务设计。 SISPO 允许模拟轨迹、光线参数和相机的固有参数。
背景 Bardet-Biedl 综合征 (BBS) 是一种具有多效性的常染色体隐性纤毛病,表现为由多个基因变异导致的一系列异常。虽然这种综合征的发病率因地区而异,但它很罕见,在北美和欧洲,每 120,000 到 160,000 人中就有 1 人患有该病。1 到目前为止,已确定 26 个基因是 BBS 的病因,其中最常见的是 BBS1 变异,随着基因检测的进步,更多的基因被发现。2 BBS 表现出明显的表型变异,临床表现包括轴后多指畸形、肥胖、视网膜营养不良、肾功能障碍、发育迟缓、认知障碍、学习障碍和性腺功能低下。 2 3 具体来说,患有 BBS1 变异的患者通常表现为夜盲症、远视散光、上睑下垂或轻度眼睑痉挛、多指足、第五指弯曲、头痛史和不同程度的饮食反应性肥胖。 4 这种综合征在生命的最初十年进展缓慢,但到第二十年和第三个十年时会显著恶化。这一点,再加上其多变的表型表现,给诊断带来了巨大挑战,通常导致患者在童年晚期或成年早期才被诊断出来。 3 因此,加深对 BBS 家庭间和家庭内表型变异的了解至关重要,因为早期诊断可以使患者更及时地获得必要的支持服务和医疗保健,从而改善健康结果。因此,我们旨在强调由 BBS1 变异引起的 BBS 家庭内表型变异,就像在两个兄弟姐妹身上看到的那样。
简介。- 一词“结构化光”是指具有非平凡且有趣的幅度,相位和/或极化分布的光场。大量工作已致力于生产结构化的光场,从而导致了新技术的发展和改进现有技术[1,2]。也许结构化光的最著名示例对应于携带轨道角动量的梁,广泛用于从量子光学到显微镜的应用中[3,4]。当前的工作着重于所谓的结构化高斯(SG)梁的结构梁的子类[5-8]。这些对近似波方程的解决方案具有自相似的特性,这意味着它们的强度曲线在传播到缩放因子时保持不变。sg梁包括众所周知的laguerre-gauss(lg)和雌雄同体 - 高斯(HG)梁[9],它们一直是广泛研究的主题,用于许多应用中的模态分解,例如模式分类和分量额定定位[10-13]。lg和Hg梁属于更广泛的SG梁,称为广义的Hermite-Laguerre-Gauss(HLG)模式[14,15],可以使用适当的圆柱形透镜(Attigmatic Translions)[16]来从HG或LG梁上获得。这些模式可以表示为模态Poincar´e球的表面上的点(MPS)[17-19],如图1。这种表示形式导致了这样的见解:这些梁可以在一系列散光转换上获得几何阶段[7,20 - 23]。HLG模式的MPS表示揭示了其固有的组结构和转换属性。这种结构的概括是将模态结构和极化混合[24]。但是,没有为无限的