据我们所知,本手稿是第一个全面的多体光发射框架,其中包括相干的三体电子 - 光子 - photon-Phonon散射,以预测来自单晶光子座的体积光电子的跨性能分布和平均横向能量(MT)。需要开发这种理论的需求源于缺乏研究,这些研究提供了对管理从单晶发出的光电子横向动量分布的基本基本过程的完整理解。例如,基于密度功能性电子质量的密度官能理论计算的初始谓词表明,PBTE的(111)表面会产生非常小的MTE(≤15meV),而我们的实验产生的MTES比这些预测大十到二十倍,并且还表现出比较低的光学发射阈值比预测较低的预测。本手稿中介绍的AB从头算框架正确地从我们的PBTE(111)中的测量值和在预测阈值下方观察到的光学范围中从我们的测量中重现了MTE的大小。我们的结果表明,在大部分材料和相干的多体电子散射过程中,两种光兴奋的状态都在忽略的初始预测中,它们在PBTE的光发射中起着非常重要的作用(111)。最后,从所吸取的教训中,我们建议一项程序,以快速计算对下一代超快电动局部应用的潜在单晶光阴极和X射线自由电子激光器的应用,这将使在凝聚力问题研究中实现可显着的进步。
6 Light and Matter 8 9 Hooman Barati Sedeh 1 , Danilo G. Pires 1 , Nitish Chandra 1 , Jiannan Gao 1 , Dmitrii Tsvetkov, 1 Pavel 10 Terekhov 1 , Ivan Kravchenko 2 , Natalia Litchinitser 1, * 11 12 1 Department of Electrical and Computer Engineering, Duke University, 27708 Durham, NC,美国。13 2纳米相材料科学中心,橡树岭国家实验室,37831 Oak Ridge,美国田纳西州。15 * Corresponding author: natalia.litchinitser@duke.edu 16 17 Keywords: mie resonances, structured light, multipole decomposition, high-index nanoparticle 18 19 Abstract 20 21 Structured lights, including beams carrying spin and orbital angular momenta, radially and 22 23 azimuthally polarized vector beams, as well as spatio-temporal optical vortices, have 24 attracted significant由于其独特的振幅,相位前,极化和25 26的时间结构引起的兴趣,从而在光学和量子中实现了各种应用27 28通信,微观渗透和超分辨率成像。在平行的结构化29个光学材料,超材料和元面孔中,由工程单元组成 - 31个元原子,开辟了新的途径,用于操纵光的流动和光学感测。32 33虽然几项研究探索了对单个元原子的结构化光作用,但它们的34个形状在很大程度上仅限于简单的球形几何形状。但是,
1. 康普顿相机 康普顿相机是一种利用康普顿散射光子的能量与其散射角度相关的事实的设备。它们通常由一个具有非常好的位置分辨率的薄散射探测器和一个单独的分段吸收器组成,用于测量散射光子的能量。知道了康普顿散射光子的能量和散射源的精确位置,就可以从散射点向后向源投射一个锥体。源被限制在锥体表面的某个位置。由于入射光子方向的模糊性,它是一个锥体而不是一条线。乍一看,这听起来没什么用。然而,第二个散射光子将产生另一个锥体,两个锥体之间的交点揭示了源的位置。原则上,如果可以在散射探测器中测量反冲电子的方向,则可以消除背投影中光子方向的模糊性。
在许多物理学领域中,找到在给定物体中随机分布的平均和弦长度是一个自然的问题。从数学角度来看,这是一个看似复杂的任务,因为人们应该考虑线的空间和角度分布以及它们如何相交对象的表面。对于凸形的身体,答案令人惊讶地简单,由平均和弦长度定理给出,该定理已有一个多世纪[1]。它指出,平均和弦长度⟨c⟩与物体的形状无关,并且仅取决于体积V与表面积的比例为⟨= 4 v /。从各种角度得到证明[2-4]。最近才表明,该定理可以进一步推广到扩散物体中随机行走的研究。平均路径长度定理[5]指出,平均路径长度仍然简单地是⟨l⟩= 4 v /;这与介质的形状和散射 /扩散特性无关。有效性延伸到许多领域,因为它对物体内部的任何随机步行都是有效的,并且与封闭散射介质中的几何光学元件特别相关。该定理的一个重要条件是,入口点和初始方向是均匀和各向同性分布的,在光学中,这与兰伯特的照明相当[2]。路径长度分布和平均路径长度是许多光学系统设计的核心,可以使用射线光学描述。它们可用于计算吸收和散射培养基的光学特性[6,7],药物粉末中的折射颗粒培养基[8],用于太阳能电池设计[9-11],随机激光[12]和集成球[13,14]。射线追踪也可以与衍射效应结合使用,以计算大型粒子的电磁散射特性,例如几何光学近似和物理光学模型[15 - 20]或
量子游动自诞生以来就被用于开发量子算法,可以看作是通常电路模型的替代品;将稀疏图上的单粒子量子游动与线格上的双粒子散射相结合就足以执行通用量子计算。在这项工作中,我们解决了一类不具有平移不变性的相互作用的线格上的双粒子散射问题,恢复了 Bose-Hubbard 相互作用作为极限情况。由于其通用性,我们的系统方法为解决一般图上的更一般的多粒子散射问题奠定了基础,这反过来又可以设计不同或更简单的量子门和小工具。作为这项工作的结果,我们表明,当相互作用仅作用于线图的一小部分时,可以高保真地实现 CPHASE 门。
本研究假设颗粒物附着有化学/生物制剂和放射性物质,对颗粒物的爆炸散射现象进行了热流体力学数值模拟,并进行了模拟颗粒散射实验来验证计算模型。去了。
摘要:由于薄膜内激发光和拉曼散射光的干扰,薄膜多层膜的拉曼信号强度随薄膜层厚度非单调变化。这一现象不仅可用于增强拉曼信号,还可用于研究薄膜厚度和光学特性。本文,我们对几种薄膜材料系统的拉曼信号厚度依赖性进行了实验研究,包括蓝宝石上硅 (SOS) 和 SOS 上的氮化硅薄膜,以及在硅基板上制备的多层 MoS 2。将适当缩放的测得强度与从传输矩阵法开发的分析模型进行比较。当激光光斑尺寸足够大于薄膜厚度时,SOS 薄膜具有很好的拟合效果。对于多层 MoS 2,发现来自底层 Si 基板的拉曼信号强度具有极好的拟合效果,而 MoS 2 特征拉曼位移的强度受激光参数和样品方向的影响。这些结果对薄膜计量和光学特性表征具有重要意义。
复杂的铁磁氧化物已被鉴定为自旋电流来源的可能候选材料。在这里,我们在LSAT底物上研究Fer-Romagnetic(LA 2/3 SR 1/3)MNO 3(LSMO)和金属Caruo 3(CRO)的双层,作为用于自旋泵送的模型系统。铁磁共振(FMR)测量结果表明,沿界面上旋转泵送的证据以吉尔伯特阻尼增加的形式增加了CRO。fmr表示CRO的存在修改了LSMO的磁各向异性。通过增加CRO厚度,我们发现平面外各向异性和易于轴在平面内的同时旋转降低,从⟨110⟩到100轴。通过FMR与大量的鱿鱼磁力测定法测量的磁各向异性的演变,并伴随着通过X射线衍射测量的LSMO层中的结构畸变,从而表明磁性偏移变化归因于cro构成的结构变形,这是由CRO归因于LSMO的结构。这些结果表明,尽管LSMO和CRO仍然有希望的候选者,分别用于有效的纯自旋电流生成和检测,但钙钛矿的外延整合会导致其他变化,这在Spintronics应用中必须考虑到。
量子计算可能会提供机会,以随着物理时间的进化来模拟强烈相互作用的场理论,例如量子染色体动力学。这将使访问Minkowski-Signature的相关器,与目前进行的欧几里得计算相反。但是,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间量。在这项工作中,我们研究了这在提取腺形和类似康普顿的散射幅度时的后果。使用Briceño等人中提出的框架。[物理。修订版d 101,014509(2020)],我们估计各种1 d Minkowski签名量的体积效应,并表明这些量可能是系统不确定性的重要来源,即使对于当今欧几里得计算标准的体积也很大。然后,我们提出了一种改进策略,基于有限体积的对称性减少。这意味着产生相同洛伦兹不变的运动点在周期系统中仍可能在物理上不同。我们所证明的是,在数值和分析上,在此类集合上平均都可以显着抑制不需要的体积变形并改善物理散射幅度的提取。由于改进策略仅基于运动学,因此可以在不详细了解系统的情况下应用它。