在这项研究中,我们开发了一个基于单光光学陷阱的表面增强拉曼散射(SERS)光氟分子指纹光谱检测系统。该系统利用单光束光学陷阱在光氟芯片中浓缩游离银纳米颗粒(AGNP),从而显着提高了SERS性能。我们使用COMSOL模拟软件研究了锥形纤维内的光场分布特性,并建立了MATLAB模拟模型,以验证单光束光学陷阱在捕获AGNP方面的有效性,证明了我们方法的理论可行性。为了验证系统的粒子捕获功效,我们通过实验控制了光学陷阱的On-Own状态,以管理颗粒的捕获和释放。实验结果表明,捕获状态中的拉曼信号强度明显高于非捕获状态,这证实了单光束光学陷阱有效地增强了光氟硅烷检测系统的SERS检测能力。此外,我们采用了拉曼映射技术来研究捕获区域对SERS效应的影响,表明激光捕获区域中分子指纹的光谱强度得到了显着改善。我们以10 -9 mol/l的浓度和农药Thiram的浓度成功地检测到了晶体紫罗兰色的拉曼光谱,并在10 -5 mol/L的浓度下进一步证明了单光束光学TRAP在增强分子手指纹状体识别能力的能力的能力。作为集成光电传感系统的关键组成部分,在本研究中开发的光捕获仪具有与便携式高功率激光器和高性能拉曼光谱仪的集成潜力。这种集成有望推进高度集成的技术,并显着提高光电传感系统的整体性能和可移植性。
混合有机 - 无机卤化物钙钛矿的太阳能电池近年来引起了人们的兴趣,这是由于其对限制和空间应用的潜力。对接口的分析对于预测设备行为和优化设备体系结构至关重要。研究掩埋界面的最先进的工具本质上具有破坏性,并且可能导致进一步的退化。离子束技术,例如Rutherford反向散射光谱法(RBS),是一种有用的非破坏性方法,用于探测多层钙钛矿太阳能电池(PSC)的元素深度谱以及研究各个接口跨接口物种的各种元素之间的相互膨胀。此外,PSC正在成为空间光伏应用的可行候选者,研究其辐射诱导的降解至关重要。RB可以同时利用它们在空间轨道中的存在,分析设备上He + Beam引起的辐射效应。在当前工作中,使用2 meV He +梁来探测具有构建玻璃 /ito /ito /iTO /sno 2 /cs 0.05(MA 0.17 fa 0.83)0.95 pb(I 0.83 BR 0.17)3 /sipo-houso-houso-obso-soptAd /moo 3 /moo 3 /au。在分析过程中,设备活性区域暴露于高达1.62×10 15 He + /cm 2的辐射,但尚未观察到梁诱导的离子迁移的可测量证据(深度分辨率约为1 nm),暗示PSC的高放射耐受性。另一方面,年龄的PSC在设备的活动区域中表现出各种元素物种的运动,例如Au,Pb,in,Sn,Br和I,在RBS的帮助下进行了量化。
6 Light and Matter 8 9 Hooman Barati Sedeh 1 , Danilo G. Pires 1 , Nitish Chandra 1 , Jiannan Gao 1 , Dmitrii Tsvetkov, 1 Pavel 10 Terekhov 1 , Ivan Kravchenko 2 , Natalia Litchinitser 1, * 11 12 1 Department of Electrical and Computer Engineering, Duke University, 27708 Durham, NC,美国。13 2纳米相材料科学中心,橡树岭国家实验室,37831 Oak Ridge,美国田纳西州。15 * Corresponding author: natalia.litchinitser@duke.edu 16 17 Keywords: mie resonances, structured light, multipole decomposition, high-index nanoparticle 18 19 Abstract 20 21 Structured lights, including beams carrying spin and orbital angular momenta, radially and 22 23 azimuthally polarized vector beams, as well as spatio-temporal optical vortices, have 24 attracted significant由于其独特的振幅,相位前,极化和25 26的时间结构引起的兴趣,从而在光学和量子中实现了各种应用27 28通信,微观渗透和超分辨率成像。在平行的结构化29个光学材料,超材料和元面孔中,由工程单元组成 - 31个元原子,开辟了新的途径,用于操纵光的流动和光学感测。32 33虽然几项研究探索了对单个元原子的结构化光作用,但它们的34个形状在很大程度上仅限于简单的球形几何形状。但是,
然而,一小部分入射离子将经历一次或多次碰撞,从而以不同程度的原始能量逃离表面(反向散射)。无论是植入还是反向散射,它们都可能导致表面或附近的原子被喷射(溅射)。大多数散射粒子在与固体接触时被中和,但那些保留电荷的粒子会根据其能量进行分析,形成国际空间站使用的光谱。(在另一种称为