摘要:在弯曲时空中量子场论的代数框架中考虑量子测量过程。使用一个量子场论(“系统”)对另一个量子场论(“探针”)进行测量。测量过程涉及有界时空区域内“系统”和“探针”的动态耦合。由此产生的“耦合理论”通过参考自然的“内”和“外”时空区域确定“系统”和“探针”非耦合组合上的散射图。没有假设任何特定的相互作用,并且所有构造都是局部和协变的。给定“内”区域中探针的任何初始状态,散射图确定从“外”区域中的“探针”可观测量到“诱导系统可观测量”的完全正映射,从而为后者提供测量方案。结果表明,诱导系统可观测量可能位于相互作用耦合区域的因果外壳内,并且通常不如探测可观测量尖锐,但比耦合理论上的实际测量尖锐。使用取决于初始探测状态的 Davies-Lewis 工具,可以获得以测量结果为条件的后选择状态。还考虑了涉及因果有序耦合区域的复合测量。假设散射图遵循因果分解属性,则各个工具的因果有序组合与复合工具相一致;特别是,如果耦合区域因果不相交,则可以按任意顺序组合工具。这是所提框架的中心一致性属性。通过一个例子说明了一般概念和结果,其中“系统”和“探测”都是量化的线性标量场,由具有紧时空支持的二次交互项耦合。对于足够弱的耦合,精确计算了由简单探测可观测量引起的系统可观测量,并与一阶微扰理论进行了比较。
图S1:CBIPS30-4F-5的表征人类干细胞系衍生的视网膜色素上皮细胞(RPE)表达GFP。(a,b)转导的CBIPS30-4F-5-GFP克隆的表征。(a)HIPSC菌落表达了多能标记SOX2,SSEA4,NANOG和TRA-1-60(比例尺:100 µM),(B)保持正常的46,XY karyotype。(c,d)培养中分化的HIPSC-RPE-GFP细胞的荧光激活细胞分选。(c)HIPSC-RPE细胞种群的正向与侧散射图显示出均匀的分布,侧散射与GFP荧光强度(在Abscissas中)显示了人们认为阳性的种群(在正方形中突出显示)。(d)细胞分选之前和之后培养中的HIPSC-RPE细胞。比例尺:75 µm。(E,F)通过视网膜下注射套管(直径23/38G)后HIPSC-RPE细胞的生存力测试。(E)侧散射强度与碘化丙啶的流式细胞仪定量分析图显示出极好的细胞活力率(98.65%)相似的非注射细胞(98.36%)。(f)通过套管后,hipsc-rpe细胞未损坏,培养10天后保持活跃。比例尺:75 µm。使用25/41g视网膜下注射套管获得了相似的结果(未显示)。
图1亚素纤维样组件的分辨率以及随后对相关的颜色编码方向分布函数(ODF)的估计。(a)R 2 -d分布,用于包含CSF和两个交叉WM种群的体素。5D P(r 2,d)据报道为R 2的3D对数散射图D,各向同性扩散性D ISO和轴向 - 径向 - 径向扩散率D K / D d r,其圆面积与通用r 2- d分量的重量成比例。颜色编码定义为:[r,g,b] = [cosφsinθ,sin ϕsinθ,cosθ] j d k -d⊥ /max /max(d,d,d,d,d,d,d,d,d,d,d,d,d,d,),其中(θ,ϕ)给出了每个轴对称d的方向。r 2 -d空间分为三个粗垃圾箱,称为“大”(蓝色体积),“薄”(红色体积)和“厚”(绿色体积)。落入“薄”箱中的成分被单打并解释为纤维。(b)每箱信号贡献的空间分布。中间地图显示了“大”(蓝色),“薄”(红色)和“厚”(绿色)垃圾箱中的分数种群,作为颜色编码的复合图像。最右图的重点是来自“薄”子集中的组件的信号贡献,f薄,(1- f thin)的补充给出了来自所有不用于ODF计算的所有组件的信号分数。交叉位置位置的体素,其分布在面板(a)中显示。(c)计算颜色编码的ODF的方案。r 2颜色的圆圈表示来自面板中信号的体素溶液的“薄”组件(b)。圆面积与W成正比,而[x,y,z]圆坐标被定义为[cos ϕsinθ,sin ϕsinθ,cosθ](左)或[cos ϕsinθ,sin ϕsinθ,cos cos cos ϕ] w(中和右)。在左图中,离散的r 2 -d组件显示在以1,000点(θ,ϕ)网格表示的单位球体上。首先通过公式(6)将P(r 2,d)组件的权重映射到网格,从而形成一个ODF字形,其半径沿r 2 -d概率密度沿给定(θ,ϕ)方向(中间)。按照ODF估计,方程(9)用于为每个网格点分配r 2,d ISO或dδ的平均值,并定义颜色ODF glyph(右)