光纤波导:光纤的传输特性:衰减。石英玻璃光纤中的材料吸收损耗:固有吸收、外部吸收。线性散射损耗:瑞利散射、米氏散射。非线性散射损耗:受激布里渊散射、受激拉曼散射。光纤弯曲损耗、纤芯和包层损耗。色散:模内色散:材料和波导色散。模间色散:多模阶跃折射率光纤、多模渐变折射率光纤。光纤总色散。光源、接头和连接器:发光二极管 (LED):原理。LED 结构:平面 LED、圆顶 LED、表面发射 LED、边缘发射 LED、超辐射 LED。量子效率和 LED 功率、LED 调制。LED 特性:光输出功率、输出光谱、调制带宽、可靠性。激光二极管:原理、光反馈和激光振荡、激光振荡的阈值条件。激光类型:分布式反馈激光器、单模激光器。
具有C 2 位对称性的[YO 6 ] 9 局域单元。17 Y 2 O 3 晶体在掺杂适当稀土离子后,由于其高热导率和低声子能量,可以作为良好的激光基质材料。18 近年来,Ho 3+ 掺杂的Y 2 O 3 (Y 2 O 3 :Ho)晶体作为一种很有前途的激光材料受到了广泛的研究。19 Laversenne 等人首次利用激光加热基座生长 (LHPG) 技术生长了Ho 3+ 掺杂的Y 2 O 3 单晶。20 此外,他们还特别分析了Y 2 O 3 :Ho的动态激光谐振特性。秦等人研究了Ho 3+掺杂的Y 2 O 3 在532 nm 连续波激光激发下的发光光谱。 21结果表明Ho3+离子在紫外和紫外区(306、390和428nm)有多个荧光跃迁,这些跃迁分别归属为3D3/5I8、5G4/5I8和5G5/5I8的跃迁。Wang等人报道了在2.1mm左右的Y2O3:Ho实现了高输出激光操作,具有低散射损耗和优异的光学质量。22他们的结果表明Ho3+掺杂的Y2O3体系作为激光增益介质在高功率和高效激光应用中展现出诱人的前景。尽管对Y2O3:Ho已经有大量研究报道,但还没有系统的研究来阐明其微观结构和电子特性。本文基于 CALYPSO(粒子群优化晶体结构分析)23 – 27 方法结合 DFT(密度泛函理论),对 Y 2 O 3 : Ho 进行了广泛的结构搜索,获得了基态结构。此外,我们计算并分析了能带结构、态密度和 ELF(电子局域化
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器