摘要 锁模激光器发出的短脉冲可以产生无背景的原子荧光,因为它允许瞬时偶发散射与随后的原子发射在时间上分离。我们利用这一点将光频和电子搁置离子阱量子比特的量子态检测提高了两个数量级以上。然而,对于原子超精细结构上定义的量子比特的直接检测,短脉冲的大带宽大于超精细分裂,并且重复激发不是量子比特状态选择性的。在这里,我们表明,通过将相干控制技术应用于被查询离子的轨道价电子,可以恢复超精细量子比特的投影量子测量所需的状态分辨率。我们展示了电子波包干涉,即使在存在大量背景激光散射的情况下,也可以使用宽带脉冲读出原始量子比特状态。
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
摘要。散射现象会影响光从自由空间到生物组织在任何介质中的传播。寻找适当的策略来提高对散射的鲁棒性是开发通信协议和成像系统的共同要求。最近,结构光因其在透射率和空间行为方面似乎具有抗散射性而受到关注。此外,光偏振和轨道角动量 (OAM) 之间的相关性(表征所谓的矢量涡旋光束 (VVB) 状态)似乎允许保留偏振模式。我们通过研究在不同浓度的散射介质中传播的矢量光涡旋的空间特征和偏振结构来扩展分析。在观察到的特征中,我们发现当采用的散射介质浓度超过 0.09% 时,高斯、OAM 和 VVB 模式的对比度突然迅速下降。我们的分析为结构光在色散和散射介质中的传播提供了更全面和完整的研究。
固溶体合金的声子散射是降低晶格热导率的一种已证实的机制。Klemens 分析模型既可以作为工程材料的预测工具,特别是在热电领域,也可以作为快速发展的复杂和缺陷材料热传输理论的基准。本评论/综述概述了用于预测由于合金散射引起的热导率降低的简单算法,以避免常见的误解,这些误解会导致对质量涨落散射的大幅高估。Klemens 空位散射模型预测的散射参数比通常假设的要大近 10 倍,但由于误差抵消,这种巨大的影响常常无法检测到。Klemens 描述可推广用于对具有缺陷的复合材料的从头算计算。解析近似与实验和理论的接近性揭示了从复杂性中出现的简单现象和降低热导率的未知机会。
对液体表面和界面处发生在原子和分子水平上发生的过程的研究对于基本表面科学以及物理,化学和生物学中的实际应用至关重要(Pershan,2014; Dong etel。,2018年; Zuraiqi等。,2020年;他等人。,2021; Allioux等。,2022)。但是,在需要亚纳米精度时,基于同步加速器的X射线散射的实验方法使这些现象稀少,从而使基于同步加速器的X射线散射成为主要的选择。高强度的同步X射线梁,它们的高度紧凑的束尺寸和非常低的差异启用了以下时间分辨率的原位和操作实验,这对于标准的实验室X射线源是不可能的。最近对欧洲同步加速器辐射设施(ESRF)的升级允许使用具有前所未有的参数的极亮X射线源(EB)进行非常苛刻的实验(Raimondi,2016)。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
摘要:研究了两个电子表面单次交叉散射的过渡路径飞行时间。这些飞行时间揭示了非平凡的量子效应,例如共振寿命和非经典通过时间,并揭示了非绝热效应通常会增加飞行时间。飞行时间是使用数值精确时间传播计算的,并与最少开关表面跳跃 (FSSH) 方法获得的结果进行了比较。两种方法的比较表明,只有当散射在相关绝热表面上被经典允许时,FSSH 方法才适用于过渡路径时间。然而,当隧穿和共振等量子效应占主导地位时,FSSH 方法不足以准确预测正确的时间和过渡概率。这些结果突出了不考虑量子干涉效应的方法的局限性,并表明测量飞行时间对于从时间域深入了解非绝热散射中的量子效应非常重要。Q
光学显微镜是生物学中最强大的工具之一。能够在广泛的尺度上可视化生命结构和事件的能力导致了基础发现。同时,为了更有效地研究活体组织,需要克服一些限制。例如,在传统显微镜中,样品要么在整个成像场上同时被照亮(宽视野照明),要么逐个像素依次被照亮(点扫描照明)。宽视野方法可以高速成像,因为它使用相机一次捕获二维图像,但它会受到光散射产生的像素串扰的影响。在点扫描方法中,单个像素检测器捕获荧光信号并逐个像素构建图像;当使用双光子激发时,它会大大减少光散射的串扰。但是,虽然双光子显微镜适合对散射组织深处进行成像,但作为一种点扫描方法,其成像速度较慢。
微型全息图经常以金字塔形状用于展览。但对各种形状的全息图的研究却很少。本研究旨在了解反射浮动全息图技术应用的微型全息图的形状。通过分析浮动全息图类型,旨在验证反射型浮动全息图是否适合微型全息图的实现,并研究适合的非金字塔形状的反射微型全息图类型。除了经常用于展览的金字塔形全息图外,作者还研究了圆锥、半球和圆柱形全息图,并将它们形成垂直结构以支持显示图像的屏幕的扩展。反射型全息图在过去存在光散射问题,但通过在屏幕上附加偏振滤光片,光散射的影响被最小化。垂直型全息图会根据观看者的视角导致图像失真。将来,如果能够将图像失真最小化,就有可能实现扩展形状。关键词
火星表面的三分之一具有较浅的H 2 O,但目前太冷了,无法生命。使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。但是,我们在这里表明,由火星上容易获得的材料制成的人造气溶胶(例如,长度约为9微米的导电纳米棒)可以使火星> 5×10 3的温暖> 5×10 3时间比最佳气体有效。这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。就像火星的自然灰尘一样,它们被高高地扫入火星的气氛中,从近地表中传递。在10年的颗粒寿命中,两个气候模型表明,以每秒30升的持续释放将在全球范围内升温30 kelvin,并开始融化冰。因此,如果可以按比例(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎比以前想象的要高。