获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
癫痫是一种导致人们癫痫发作的神经系统疾病,也是脑电图的主要应用领域。在本研究中,提出了一种用于健康和癫痫(EEG)信号分类的时间和频率特征方法。使用互相关(CC)方法提取时域特征。通过计算功率谱密度(PSD)提取与频域相关的特征。在研究中,这些单独的时间和频率特征被认为对EEG本身的性质具有互补性。通过使用散度分析,可以定量测量特征空间中特征向量的分布。因此,建议使用而不是单个特征向量进行分类。为了显示该方法的效率,首先,分别分析基于时间和频率的特征向量在总体准确度方面的分类性能。然后,将通过各个特征向量获得的特征向量用于分类。给出了不同分类器结构所取得的结果。借助其他针对同一数据集的研究,对本研究获得的性能进行了比较评估。结果表明,互相关和 PSD 得出的特征组合在区分癫痫和健康脑电图片段方面非常有前景。