新加坡,2025年1月6日,新加坡和日本科学家开发了技术来控制来自南洋技术大学,新加坡(NTU新加坡),大阪大学和海洛希玛大学的机器人昆虫群的科学家,开发了一种先进的Swarm Swarm Navergation Angorigh algorg,可阻止它们成为遇到挑战的领域的机器人。发表在《自然通讯》上,新算法代表了群体机器人技术的重大进步。它可以为救灾,搜索任务和基础设施检查的应用铺平道路。Cyborg昆虫是真正的昆虫,背面配有微小的电子设备 - 由光学和红外摄像机,电池和用于通信的各种传感器组成 - 使其动作受到特定任务的遥控控制。2008年,来自NTU新加坡机械和航空航天工程学院的Hirotaka Sato教授首先证明了单一幼体昆虫的控制。然而,单一昆虫不足以进行诸如搜索和救援任务的操作,地震幸存者被散开,并且有一个最佳的72小时窗口来定位它们。
摘要:硅 - 有机杂种(SOH)电光(EO)调节器将小占地面积与低操作电压和低功率散开结合在一起,因此将自己借给大规模设备阵列的芯片整合。在这里,我们演示了一个电气包装概念,该概念可以在片上SOH设备和外部电路之间实现高密度射频(RF)接口。该概念结合了高分辨率AL 2 O 3印刷电路板和技术简单的金属线键,并且可以适合包装带有小片上键盘垫的设备阵列。在一组实验中,我们表征了基础RF构建块的性能,并通过产生高速光学通信信号来证明整体概念的可行性。Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shift-keying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitude-modulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof- of-concept experiments to deployment in commercial环境。
正常状态电导率和缺氧的临界温度YBA 2 Cu 3 O 7-δ可以通过照明持续增强。多年来一直有争议的是,这些影响的起源(称为持续的光电导率和照相动物(PPS))仍然是一个未解决的关键问题,其理解力可能会为利用高温超导性本身的起源提供关键的见解。在这里,我们为理解PPS迈出了重要步骤。到目前为止提出的模型假设它是由载体密度增加(光接种)引起的,但我们的实验与这种常规信念相矛盾:我们证明它与光诱导的电子散射率降低相关。此外,我们发现后一种效果和光接双完全断开并起源于不同的显微镜机制,因为它们呈现出不同的波长和氧气依赖性以及明显不同的弛豫动力学。除了有助于散开光电传动,持续的光电导率和PPS外,我们的结果还为临界温度与散射率之间的紧密关系提供了新的证据,这是现代理论的高温超导性的关键成分。
声音就是运动。拨动吉他弦时,附近的空气也会随之移动。图 1.1 显示了不同拨动状态下的吉他弦。左侧是静止的吉他弦,右侧悬挂着十几个小空气分子。吉他弦静止时,当地大气压约为 14.7 磅/平方英寸——海平面气压。拨动吉他弦时,它会短暂地向右移动,空气分子会挤压得更紧密——也就是说,它们被压缩到更高的压力。a 然后,经过很短的时间(百分之一或千分之一秒,取决于音符的音高),吉他弦会弹回到静止位置的方向,并继续移动超过初始静止状态,直到它稍微向左移动。然后右侧的空气分子再次散开,压力降低。但它们不会立即回到拨动琴弦之前的相同间距。它们会稍微超出一点,所以现在它们比弦移动之前分散得更多——它们处于较低的压力下。然后它们再次反弹在一起,再次分散开来,依此类推,每次都少一点,直到最终运动停止,振动减弱到
细胞的边界是由生物膜形成的,即定义细胞内部和外部的屏障。这些障碍可以防止细胞内部产生的分子泄漏出来,并从扩散中散开分子;然而,它们还包含允许细胞采用特定分子并去除不需要的传输系统。此类运输系统授予膜选择性渗透性的重要特性。膜是动态结构,其中蛋白质漂浮在脂质的海中。膜的脂质成分形成了通透性的屏障,蛋白质成分充当泵和通道的传输系统,可将选定的分子进入和流出细胞。生物膜形成不对称结构,并且像具有流动性一样是流体,即具有各种细胞分子的易位酶。生物膜的不对称性可以部分归因于膜内蛋白质的不规则分布。生物膜的脂质双层由外部小叶和内部小叶组成,它们分布在两个表面之间,以在外表面和内表面之间形成不对称性。这个不对称的组织对于细胞功能(例如细胞信号传导)很重要。生物膜的不对称性反映了膜的两个传单的不同功能。如磷脂双层的流体膜模型所示,膜的外部和内部小叶在其组成中是不对称的。膜流动性是指
2020年9月18日,联邦调查局(FBI)在宾夕法尼亚州卢塞恩县的地方检察官办公室(DA的办公室)告知,卢塞恩县选举局雇员已丢弃了卢塞恩县委员会完成的邮寄选举选票,即即将到来的2020年12月2020年大选的选举选票。联邦调查局和DA的办公室确定,丢弃了7次军事缺席选票,所有选票都与原始信封散开并分开,因此,每项联邦,州和地方种族的选票都可以识别。卢塞恩县选举官员还向联邦调查局提供了两个密封的投票信封,选举官员表示员工不幸。9月21日,DA的办公室要求联邦调查局接管调查,联邦调查局同意进行。第二天,9月22日,卢塞恩县地方检察官咨询了当时的宾夕法尼亚州中区的美国检察官,大卫释放了有关潜在新闻稿的释放。当天晚些时候,DA的办公室发布了一份新闻稿,指出“卢塞恩县选举局收到的少量邮寄选票问题”,该办公室已经“咨询了美国检察官办公室”,并且“联邦当局[联邦当局]假设对这一事件进行了领导权的调查。”
最近利用超分辨率活细胞显微镜进行的实验表明,非肌肉肌球蛋白 II 微丝比以前认为的更具动态性,经常表现出塑性过程,例如分裂、连接和堆叠。在这里,我们结合序列信息、静电和弹性理论来证明 14.3、43.2 和 72 nm 处的平行交错具有强烈的从微丝上散开头部的趋势,从而可能引发活细胞中看到的各种过程。相反,重叠 43 nm 的直线反向平行交错非常稳定,很可能引发微丝成核。使用新定义的能量景观中的随机动力学,我们预测肌球蛋白杆之间的最佳平行交错是通过反复试验过程获得的,其中两个杆通过滚动和拉链运动以不同的交错连接和重新连接。实验观察到的交错是接触时间最长的配置。我们发现,从异构体 C 到 B 再到 A,接触时间逐渐增加,A-B 异二聚体出奇地稳定,肌球蛋白 18A 应该以较小的交错结合到混合细丝中。我们的研究结果表明,细胞中的非肌肉肌球蛋白 II 细丝首先由异构体 A 形成,然后转化为混合 AB 细丝,正如实验所观察到的那样。
电子邮件:yasminahmed4488@gmail.com摘要背景:多达80%的男性和50%的女性在生活中的某个时候将拥有雄激素性脱发(AGA),这使其成为最普遍的脱发。 是由于脱氢睾丸激素(DHT)的作用,一种睾丸激素代谢物,对雄激素敏感的毛囊的作用,受影响的毛发的宽度,长度和颜色在AGA中逐渐降低。 到达pili肌肉由没有细胞质条纹且具有集中雪茄形核的梭形细胞组成。 这些肌肉在凸起区域的毛囊周围围绕着毛囊,并以急性角度链接到它。 研究表明,大鼠和人类毛囊的皮肤鞘均包含α平滑肌 - 肌动蛋白(α-SMA),但是该蛋白在皮肤乳头细胞中没有发现。 在这篇文章中,我们将研究雄激素性脱发的病理生理以及α平滑肌阳肌素如何在其中发挥作用。 毛囊中结构完整性的丧失可能是α-SMA对AGA造成的一种方式。 在AGA患者的顶点区域,α-SMA的表达显着降低。 此外,与枕叶区域相比,AGA患者的顶点区域显示出α-SMA表达的降低。 关键字:毛囊,雄激素脱发(AGA)以及α平滑肌 - 肌动蛋白(α-SMA)。 引言头发散发出,变短,由于Aga而失去颜色。 脱氢睾丸激素(DHT),一种睾丸激素的副产品,会触发雄激素敏感毛囊中的脱发。 这些细胞的细胞质没有条纹。电子邮件:yasminahmed4488@gmail.com摘要背景:多达80%的男性和50%的女性在生活中的某个时候将拥有雄激素性脱发(AGA),这使其成为最普遍的脱发。是由于脱氢睾丸激素(DHT)的作用,一种睾丸激素代谢物,对雄激素敏感的毛囊的作用,受影响的毛发的宽度,长度和颜色在AGA中逐渐降低。到达pili肌肉由没有细胞质条纹且具有集中雪茄形核的梭形细胞组成。这些肌肉在凸起区域的毛囊周围围绕着毛囊,并以急性角度链接到它。研究表明,大鼠和人类毛囊的皮肤鞘均包含α平滑肌 - 肌动蛋白(α-SMA),但是该蛋白在皮肤乳头细胞中没有发现。在这篇文章中,我们将研究雄激素性脱发的病理生理以及α平滑肌阳肌素如何在其中发挥作用。毛囊中结构完整性的丧失可能是α-SMA对AGA造成的一种方式。在AGA患者的顶点区域,α-SMA的表达显着降低。此外,与枕叶区域相比,AGA患者的顶点区域显示出α-SMA表达的降低。关键字:毛囊,雄激素脱发(AGA)以及α平滑肌 - 肌动蛋白(α-SMA)。引言头发散发出,变短,由于Aga而失去颜色。脱氢睾丸激素(DHT),一种睾丸激素的副产品,会触发雄激素敏感毛囊中的脱发。这些细胞的细胞质没有条纹。牙冠区域的弥漫性稀疏和额叶发际线的保存是脱发的路德维希(Ludwig)模式的特征是AGA女性经历的症状。在男性模式秃发中,额叶发际线在耳朵后面稍微退缩,然后在顶点散布散开[1]。以前认为每个毛囊都连接到其自身的AP。组织学切片揭示了浓缩的核,这些核是“雪茄形”的,并以到达pili(APM)细胞的梭形形状为特征。通常,APM在卵泡的侧面显示为与皮肤表面急性角的正常结构。在末端和牛皮毛上,APM的近端末端环绕着凸起区域的整个卵泡[2]。人卵泡,大鼠毛皮和大鼠颤音都包括平滑肌α-肌动蛋白。抗原在任何卵泡类型中均未由皮肤乳头细胞表达。然而,这种抗体在培养的头发中染色了大部分皮肤乳头和真皮鞘细胞。用脱敏抗体检查时,相同的细胞会恢复为阴性[3]。材料和方法数据来源:使用Medline数据库进行了文献综述(Pub
散热器通过调节其热输出来维持电子设备的最佳工作温度,从而起着至关重要的作用。有效的设计对于确保有效的散热量至关重要,从而延长了组件寿命和整体系统性能。随着表面积的增加,由于更多的接触点而引起的热量耗散速率也会增加。这意味着更大的表面积可以从散热器到周围的空气中更大的热传递,从而增强冷却。在紧凑的系统中,在包含结构的同时达到一个较大的表面积至关重要。鳍和销阵列,微通道散热器或折叠鳍结构等技术可以增强热量消散而不会增加尺寸。多孔材料,例如金属泡沫,为热传递提供了巨大的内部表面区域。选择散热器的材料时,导热率是关键参数。铜的高热电导率为390-400 w/m·K,使其非常适合高端应用。但是,其成本和密度可能构成挑战。铝的导热率相对较低,但更具成本效益和更轻。像石墨烯这样的新材料具有出色的热导率,并且可能在HSF设计方面具有希望。材料的选择取决于特定的应用要求,即考虑效率,成本,质量和坚固性等因素。有效的散热器设计取决于三种主要的传热机制:传导,对流和辐射。鳍片或销阵列可以增加表面积,而风扇或鼓风机可以提高流速。传导对于将热量从组件转移到外部环境至关重要,从而进一步耗散。总而言之,选择合适的材料和优化散热器设计对于有效的热管理至关重要。热性能优化涉及通过改善热量交换的热界面材料保持热源和散热器之间的良好接触。适当的热路径分布和避免间隙对于有效的热传导至关重要。对流在冷却中起着至关重要的作用,最大化表面积对于提高对流效率至关重要。辐射是散热器设计中的另一个重要机制,Stefan-Boltzmann定律描述了它。使用高发射率的涂料可以显着增强辐射传热。散热器的几何特性在优化热辐射方面也起着至关重要的作用。为了实现有效的热量散热,特征应尽可能多地暴露表面积。散热器的效率在很大程度上取决于其表面,对流传热取决于表面积。计算给定的散热速率的必要表面积涉及使用方程q = h×a×Δt。傅立叶传导定律描述了通过材料的传热:QCONDUCTION = -K×A×ΔT/L。要确定鳍有效性,请使用等式q = h×a×ΔT来计算单个鳍片的传热速率。通过优化热电阻,对流和辐射,可以设计有效的散热器,以有效地将热量从表面散开。制定散热器的过程涉及几个阶段,这些阶段需要特定的工程计算以最大程度地提高热效率。要定义其性能,需要考虑三个关键因素:瓦特,环境温度(TA)和最高连接温度(TJ)中的散热耗散需求(Q)。例如,如果电子组件耗散20 W的热量,则Q = 20 w。然后通过从连接温度中减去环境温度来计算所需的温度升高(ΔT)。散热器的热电阻必须达到所需的温度升高,rth =ΔT/q = 55/20 = 2.75°C/w。散热器选择的类型和材料取决于诸如热量,重量和成本等因素。铝的导热率约为205 W/m·K,因此由于其有效性和成本而适合使用。调整散热器的尺寸和形状,以满足所需的热电阻水平,其中包括鳍片类型,销型或两者。鳍间距计算为:鳍间距=散热器的高度/鳍数。选择散热器设计时,请确保满足热电阻计算。空气对流传热系数(H)通常为10 - 50 W/m²·k。有效的热电阻计算为:rth,总计= rth,散热器+rth,界面+rth,结。按照设计信息构建物理散热器,并通过使用温度计测量温度差异来评估。取决于结果,可以对设计进行一些修改,以达到必要的热电阻。在设计电子设备时,适当的热管理至关重要,因为错误可能会产生负面影响。一个常见的错误是低估了适当的散热所需的表面积,这可能导致温度状态增加,甚至会导致组件的热冲击。制造有效的铝热散热器对于冷却电子设备至关重要,并防止它们过热。散热器用于消散由晶体管,CPU和功率放大器等组件产生的热量。制作散热器的过程涉及多个步骤,包括选择合金,设计散热器以进行最佳性能,准备材料,完成表面以增强与组件的接触,创建鳍以增加表面积,并将所有部分组装在一起。铝是一种流行的选择,因为其出色的导热率和轻质性质。但是,并非所有铝合金都适合散热器。通常使用6061和6063,因为它们具有良好的导热率且具有成本效益。散热器的设计应考虑尺寸,形状和鳍排列等因素,以确保最佳性能。准备材料涉及使用锯或CNC机器将其切成所需的尺寸,并在此过程中佩戴安全齿轮。整理表面需要砂纸逐渐磨碎的砂纸,然后使用金属抛光化合物进行抛光。这会产生光滑的表面,从而促进与热生成分量更好的接触。创建鳍涉及使用CNC机器或类似工具将其均匀地切入铝材材料,从而大大增加了散热器的表面积并允许更好的散热。散热器的鳍的尺寸和形状均匀,以确保在整个散热过程中保持稳定的性能。
lubrizol Advanced Materials,Inc。(“ Lubrizol”)希望您找到了提供的信息,但是您警告您,该材料(包括任何原型公式)仅用于信息目的,并且独自负责自己对信息的适当使用进行评估。在适用法律允许的最大范围内,Lubrizol不做任何陈述,担保或保证(无论是明示,暗示,法定还是其他),包括对特定目的的适销性或适用性的任何暗示保证,或任何信息的完整性,准确性或及时性。lubrizol不能保证此处参考的材料将如何与其他物质一起执行,以任何方法,条件或过程,任何设备或非实验室环境中的任何方法,条件或过程。在包含这些材料的任何产品进行商业化之前,您应该彻底测试该产品,包括产品包装的方式,以确定其性能,功效和安全性。您对您生产的任何产品的性能,功效和安全性负责。lubrizol不承担任何责任,您应承担所有使用或处理任何材料的风险和责任。所有司法管辖区都不得批准任何索赔。任何与这些产品相关的索赔的实体均负责遵守当地法律和法规。您承认并同意您正在使用此处提供的信息自负。如果您对Lubrizol提供的信息不满意,则您的独家补救措施将不使用信息。未经专利所有人许可,本文中没有任何内容作为许可,建议或诱因,以实践任何专利发明,而您的唯一责任有责任确定是否存在与专利侵犯与所提供信息有关的任何组件的专利侵犯或组合组合有关的问题。