基于抽象的层激光添加剂制造技术在制造具有复杂形状的金属复合材料方面具有巨大的多功能性和灵活性。有兴趣产生具有高级特征的新的多物质材料的兴趣超过了可用的方法,这些方法可提供对散装材料形成的见解,进而可以实现过程和材料优化。虽然一些高级操作研究可以在已建立的金属层中进行高度局部观察,但大部分材料中固有的固有热处理的影响通常超出了操作的表征。在这里,我们通过高级Operando Neutron成像接近该政权,该成像利用中子光束线上定制设计的激光粉末融合设备。Operando偏振对比中子成像实验在建筑物厘米的标本中进行,具有不同的粉末预混合组成为316L和CUCRZR。这些全场上分辨的测量结果揭示了在整个样品和加工时间中铁磁相和温度的定量演化。
域壁中的扭结(和反kinks)之间的弹性相互作用在塑造域结构及其动力学方面起着关键作用。在散装材料中,扭结作为弹性单孔相互作用,取决于壁之间的距离(d -1),通常以刚性和直域的结构为特征。在这项工作中,通过原位加热显微镜技术在独立样品上的原位加热显微镜技术研究了域结构的演变。随着样本量的减小,观察到显着转化:域壁表现出明显的曲率,并伴随着域壁和连接密度的增加。这种转换归因于扭结的明显影响,引起了样品翘曲,其中“偶极 - 偶极”相互作用是主导的(d -2)。此外,在实验上鉴定出单极和偶极方案之间描述单极和偶极方案之间的交叉的临界厚度范围,并通过原子模拟来证实。这些发现与原位研究和基于独立的铁罗薄膜和纳米材料的新设备的开发有关。
1维(1D)配位聚合物指的是通过金属结合配体组中掺入金属离子或主链中的金属离子的大分子。,由于金属配体键的性质,它们比传统聚合物具有调节聚合物结构和功能的内在优势。因此,它们具有智能和功能结构以及伴随剂和治疗剂的巨大潜力。水溶性的1D配位聚合物和组件是协调聚合物的重要亚型,具有与生物和医疗应用等水性系统中苛刻应用的独特兴趣。本评论重点介绍了水溶性1D协调聚合物和组件的最新进展和研究成就。概述涵盖了1D配位聚合物的设计和结构控制,它们的胶体组件,包括纳米颗粒,纳米纤维,胶束和囊泡,以及制造的散装材料,例如膜无液体冷凝器,安全墨水,水凝胶驱动器和智能面料。最后,我们讨论了这些坐标国家聚合物结构和材料中几个的潜在应用,并在水性坐标聚合物的领域中展现出前景。
具有可适应于不同环境条件的物理化学特性的构造材料体现了材料科学的破坏性新领域。在数字设计和制造方面的进步推动下,形状成晶格拓扑的材料可实现一定程度的定制,而无需提供散装材料。一个有前途的启发其设计的场所是自然的不规则微构造。然而,这种不规则性解锁的巨大设计可变性对于分析探测很具有挑战性。在这里,我们提出了一种使用基于图的表示定期和不规则晶格材料的新计算方法。我们的方法使用传递算法的可区分消息来计算机械性能,因此允许使用替代衍生物自动分化,可以调整单个晶格元素的几何结构和局部属性,以实现具有所需属性的成型材料。我们进一步引入了图形神经网络替代模型,以大规模结构分析。该方法可推广到可表示为异质图的任何系统。关键字 - 超材料,晶格,逆设计,消息传递,图形神经网络,自动差异,替代梯度
熵相关的相位稳定可以允许多个主元素的组成复杂的固体解决方案。最初针对金属引入了大规模混合方法,最近已扩展到离子,半导体,聚合物和低维材料。多元混合可以利用散装材料以及界面和位错的新型随机,弱有序的聚类和降水状态。许多可能的原子配置提供了发现和利用新功能的机会,并创建了新的本地对称功能,订购现象和源自配置。这打开了一个巨大的化学和结构空间,在该空间中,未知的相位状态,缺陷化学,机制和性质(一些以前被认为是互斥的)可以在一种材料中进行核对。早期的研究集中在强度,韧性,疲劳和延展性等机械性能上。本综述将焦点转向多功能性能曲线,包括电子,电化学,机械,磁性,催化,与氢相关,不散热和热量特征。破坏性的设计机会在于将其中几个功能结合在一起,从而在不牺牲其独特的机械性能的情况下渲染高渗透材料。
摘要:减小尺寸为可调相变行为提供了合成途径。准备材料作为纳米颗粒会导致临界温度(T C),磁滞宽度以及一阶与二阶相变的“清晰度”引起急剧调制。从融化到超导性的这种尺寸依赖性的化学反应的微观图片仍在争论中。作为一个具有广泛意义的案例研究,我们在金属有机框架(MOF)Fe(1,2,3-3-元素)的纳米晶体中依赖于大小依赖性的自旋跨界(SCO)2,是由金属链键键在较小的颗粒中变得越来越稳定的。与散装材料相比,差量扫描量热法表明最小颗粒中T C和D H的降低约30-40%。可变的振动光谱镜头揭示了长距离结构合作的降低,而X射线衍射效果的热膨胀系数增加了三倍以上。此“声子软化”提供了一种分子机制,用于设计框架材料中尺寸依赖性行为以及理解一般相位变化。
通过电子邮件2024年12月16日,布鲁斯·麦克德莫特(Bruce McDermott),Esq。Murtha Cullina LLP 265 Church Street New Haven,CT 06510 BCMCDERMOTT@Murthalaw.com Re:请愿书号。 923a-燃料电池能源公司(Fuel Cell Energy,Inc。 理事会对请愿人的询问。 亲爱的律师麦克德莫特(McDermott):康涅狄格州选址委员会(理事会)要求您对封闭问题的回答不迟于2024年12月30日。 请向理事会的办公室提交原件和15份副本,并将电子副本和电子副本提交给stit.council@ct.gov。 根据州固体废物管理计划,并按照康涅狄格州机构法规第16-50J-12条的规定,理事会要求将所有文件提交在可回收纸上,主要是正常的重量白色办公纸。 请避免使用大量的纸张,彩色纸,金属或塑料粘合剂和分离器。 可以适当地提供更少的散装材料副本。 请注意,必须在2024年12月30日截止日期之前或之前将原始副本和15个副本提交给理事会办公室。 您的答复副本必须提供给服务列表中列出的所有各方和中间人,可以在理事会网站上找到“未决事项”链接。 真诚,Murtha Cullina LLP 265 Church Street New Haven,CT 06510 BCMCDERMOTT@Murthalaw.com Re:请愿书号。923a-燃料电池能源公司(Fuel Cell Energy,Inc。理事会对请愿人的询问。亲爱的律师麦克德莫特(McDermott):康涅狄格州选址委员会(理事会)要求您对封闭问题的回答不迟于2024年12月30日。请向理事会的办公室提交原件和15份副本,并将电子副本和电子副本提交给stit.council@ct.gov。根据州固体废物管理计划,并按照康涅狄格州机构法规第16-50J-12条的规定,理事会要求将所有文件提交在可回收纸上,主要是正常的重量白色办公纸。请避免使用大量的纸张,彩色纸,金属或塑料粘合剂和分离器。可以适当地提供更少的散装材料副本。请注意,必须在2024年12月30日截止日期之前或之前将原始副本和15个副本提交给理事会办公室。您的答复副本必须提供给服务列表中列出的所有各方和中间人,可以在理事会网站上找到“未决事项”链接。真诚,任何要求延长时间提交审讯回应的请求,应根据《康涅狄格州机构法规》第16-50J-22A的书面形式提交理事会。
摘要:低温场效应晶体管(FET)为应用提供了巨大的潜力,最值得注意的例子是量子信息处理器的经典控制电子设备。对于后者,低功耗的片上FET至关重要。这需要在Millivolt范围内的操作电压,只有在具有超级阈值斜率的设备中才能实现。然而,在基于散装材料的常规低温金属 - 氧化物 - 氧化 - 氧化 - 氧化氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 脱氧剂(MOS)FET中,由于疾病和MOS界面处的带电缺陷,实验上实现的逆下阈值倾斜在几个MV/DEC周围饱和。基于二维材料的FET提供了有希望的替代方案。在这里,我们表明,基于六角形硝化硼的Bernal堆叠的双层石墨烯和石墨门在0.1 K时表现出逆下阈值斜率,在0.1 K时表现出逆下阈值,接近250μV/dec,接近玻尔兹曼的限制。此结果表明在没有散装界面的范德华异质结构中对带尾的有效抑制,从而在低温温度下导致了卓越的装置性能。关键字:Bernal堆叠的双层石墨烯,带隙,子阈值坡度,疾病
通过人工图案化的各向异性材料(例如介电交代面)的光传播,可以使用高度跨父,薄的和平坦的光学元素来精确控制光场的空间 - 矢量性能。液晶细胞是这种设备的常见实现。光损失通常被认为是偏振依赖性的,因此经常在对这些系统进行建模时经常看到。在这项工作中,我们将带有图案性双重双重和二色性的电液晶元质体引入,通过将二甲状腺染料分子掺入液 - 晶体混合物中来实现。这些染料分子与液晶,有效的耦合双发性和二色性效应对齐。使用非单身琼斯矩阵描述了这些跨度的行为,并通过极化测量验证。在形成形成形成极化光栅的depitices的情况下,我们还表征了衍射效率,这是二分法和双发性参数的函数,可以通过在整个细胞上施加电场来共同调谐。这项研究不仅引入了一类新的光学成分,而且还加深了我们通过各向异性材料对光传播的理解,在这些材料中,二色性可以自然地来自散装材料的特性,或者来自其接口处的反射和传播定律。
通过将库珀对的反平行电子旋转沿空地外方向锁定,使平面上临界磁场的平面上限上限超过了保利的极限。首先是在过渡金属二分法的完全二维单层中明确证明的,具有大型旋转轨道耦合和破裂的反转对称性。从那时起,几项研究表明它也可以存在于分层的散装材料中。在我们先前的研究中,我们阐明了基于散装超导性超导性的基本微观机制,基于通过绝缘层和限制反演对称性而导致的超导层之间的电子耦合减少。但较早的研究表明,在某些过渡金属二甲藻元中多型pauli paparagnetic极限也违反了。在这里,使用热容量测量值我们明确证明,原始的非中心体积4H A -NBSE 2多型物质显着违反了Pauli的极限。在理论模型中使用了使用实验确定的晶体结构从Ab ITIOL计算获得的频带结构参数,该模型在理论模型中使用,该模型提供了仅基于破裂的反转对称性的ISING保护的微观机制。