在1950年代末和1960年代初扩展了有关图形统治的研究。该主题的历史可以追溯到1862年,他研究了确定控制或覆盖棋盘需要多少个女王的问题[9]。克劳德·伯格(Claude Berge)在1958年的图理论书中首先提出了图的统治数或(外部稳定系数)的概念。术语(主导数字)和(主导集)首先由Oystein Ore在1962年的图表理论书中使用[10]。由Cockayne和Hedetniemi在1977年提出了公认的符号𝛾(𝐺),以表示统治数[11]。娱乐性数学的研究导致对图中的优势进行了研究。数学家专门研究了如何以与他们可以攻击或控制棋盘上每个正方形相同的方式排列碎片[12]。
摘要——实施可再生能源的趋势仍在上升。全球变暖和化石燃料造成的许多其他有害影响促使全世界转向可再生能源。水泵被认为是消耗传统柴油燃料提供的高功率的主要负荷。因此,光伏 (PV) 能源越来越多地用于水泵系统。该技术基于使用光伏阵列将太阳能转换为电能以运行直流或交流电机水泵。为了提高太阳能在水泵系统中的利用率,本文提出了一种可行的光伏尺寸确定方法,以获得所需的光伏模块来覆盖水泵负载。所提出的方法是一种用户友好的工具,基于非技术用户输入的经济值。这项研究的主要目的是通过展示一个完全独立的光伏系统来弥补当前水泵系统光伏尺寸确定工具中发现的研究空白,该系统由太阳能电池阵列、逆变器、太阳能充电控制器和断路器以及电池组组成。此外,还计算了系统安装的总成本及其回收期。该研究讨论了该系统在埃及不同地理位置的性能。最后,测量了该系统节省的二氧化碳减排量。结果确保有效利用太阳能作为水泵系统的驱动能源。
本研究正在对电动汽车中使用的电池的直接液体冷却系统进行建模。该研究的目的是在不同的参数输入下研究锂离子电池模型的性能,并评估电池热管理系统模型的最佳参数,以保持其峰值性能。SolidWorks和ANSYS用于模拟和模拟电池,而Minitab软件则选择进行统计分析。热通量,入口处的质量流速和电池模型的厚度已选择为模拟的输入。获得的结果表明,随着较高的热通量和质量流量量,传热系数正在增加,但随电池模型的厚度而减小。当热通量变化时,压力下降保持恒定,但随着质量流速而增加,并且与电池厚度成反比。为了进行统计分析,提出了参数的最佳值,以保持电池以最高的传热系数运行,但压力差最低。总体而言,该研究已成功进行并实现了所陈述的目标。
从模型输出的观测数据确定物理模型中参数值的随机逆问题构成了科学推理和工程设计的核心。我们描述了一种最近开发的基于测度理论和等高线图概括的随机逆问题的公式和解决方法。除了完整的分析和数值理论之外,这种方法的优点还包括避免引入临时统计模型、无法验证的假设和模型更改(如正则化)。我们提出了一种高维应用来确定风暴潮模型中的参数场。我们最后介绍了最近关于定义随机逆问题的条件概念及其在设计最佳可观测量集方面的工作。
我们执行最优控制理论计算,以确定执行少量子比特系统的量子态准备和幺正算子合成所需的最少两量子比特 CNOT 门数量。通过考虑所有可能的门配置,我们确定了可实现的最大保真度作为量子电路大小的函数。这些信息使我们能够确定特定目标操作所需的最小电路大小,并列举允许完美实现该操作的不同门配置。我们发现,即使在最少门数的情况下,也有大量配置都能产生所需的结果。我们还表明,如果我们使用多量子比特纠缠门而不是两量子比特 CNOT 门,则可以减少纠缠门的数量,正如人们根据参数计数计算所预期的那样。除了处理任意目标状态或幺正算子的一般情况外,我们还将数值方法应用于合成多量子比特 Toffili 门的特殊情况。该方法可用于研究任何其他特定的少量子比特任务,并深入了解文献中不同界限的紧密度。
a Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China b Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China c Environmental Energy Research Group, Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
摘要太阳能收集器与潜热热量储能系统(LHTESS)的组合已被用来更有效地利用太阳能,因为该技术可以提供平衡功能以符合供求的可变性,从而减少电力供应挑战。计算流体动力学(CFD)已被证明是用于优化目的的重要数学工具。因此,它可用于验证不同的设计配置。这项研究旨在使用ANSYS/Fluent进行数值模拟,以研究与热太阳能收集器集成的相变材料(PCM)存储系统的热行为,并将其与文献综述的实验数据进行了比较,目的是研究对存储介质材料的适当选择。数值仿真结果与实验结果之间的良好对应关系验证了拟议的数值模型,以置信度使用,以评估不同配置中太阳能收集器的性能。所评估的配置包括不同类型的相变材料和NEPCM(Popaffin Wax,RT64HC,Beeswax,Rt64Hc,rt64hc,占Cu的1 wt。beeswax,beeswax,占GNP的0.15 wt。%)。进行了时间步骤灵敏度分析,并获得的结果表明,数值模型不取决于时间。从获得0.15 wt的蜂蜡获得的结果中,水的最高峰值是水的平均温度的最高峰,但是PCMS的整合在热增加方面并不带来重大好处,以补偿与这些材料相关的最高成本。关键字:太阳能热水器,热量存储,相变材料(PCM),潜热存储,计算流体动力学(CFD),热性能。
电子邮件:stmf_tasha@yahoo.com 摘要。在农业航空喷洒文献中,喷雾漂移缓解和植物保护产品应用中的喷雾质量仍然是评估股东价值的两个关键因素。通过一系列计算流体动力学 (CFD) 模拟,模拟了 250 米跑道上的偏离目标漂移和地面沉积物的研究。蒸发液滴的漂移模式由一架以 30 米/秒 (60 英里/小时) 的恒定速度飞行的飞机释放,该飞机携带 20 米幅宽的喷杆,喷杆上有 12 个扇形喷嘴,释放高度距地面 3.7 米至 4.7 米。液滴轨迹是根据给定的空速计算的,采用拉格朗日粒子扩散模型,不包括任何风效应扰动。所提出的 CFD 模型预测与引用的文献在广泛的大气稳定度值范围内的预测结果非常吻合。结果表明,随着喷雾释放高度的增加,喷雾漂移和液滴轨迹显著增加。这表明,较低的飞机喷雾释放高度与较低的空速相结合对于提高喷雾质量至关重要,而最大限度地在目标区域均匀沉积对于最大限度地降低喷雾漂移风险具有重要意义。
摘要:本文利用有限元法(FEM)将PoP(Package on Package)用PCB分成单元和基板进行翘曲分析,分析层厚度对翘曲的影响,并利用田口法计算SN(信噪比)。分析结果显示,在单元PCB中,电路层对翘曲的贡献很大,其中外层的贡献尤其大。另一方面,基板PCB虽然电路层对翘曲的影响较大,但相对于单元PCB来说相对较低,阻焊剂的影响反而较大。因此,同时考虑单元PCB和基板PCB,PoP用PCB的逐层结构设计时,宜使外层和内层电路层较厚,顶层阻焊剂较薄,底层阻焊剂厚度在5μm~25μm之间。
使用数值分析比较了具有不同内部结构的七个水冷微型冷水冷板的热和液压性能。最近对高性能计算的需求不断提高,导致电子设备的热管理挑战。除了危险的片上温度,异质整合和升高温度(热点)的局部区域还导致芯片级温度分布不均匀。结果,电子设备的寿命和可靠性受到不利影响。由于限制了气冷散热器,开发了几种新方法,例如液体冷却的微通道冷板,以解决这些挑战。这项工作的目的是提供比较的数值研究,以了解不同微型通道冷板内部结构在具有不均匀功率图和热点的芯片的热管理中的有效性。冷板热