图1:左:透明保护结构的结构,具有可调节厚度的玻璃层(黄色)、粘合剂层(灰色)和聚合物背衬层(蓝色),以防止玻璃碎片脱落 中间:预测(模拟)透明保护结构在弹丸穿透后如何失效,以选择示例性层厚度 右:保护结构中的实际裂纹模式与使用材料力学模型进行数值模拟预测的失效行为非常相似
虚拟车辆研究GmbH,拥有300名员工,是欧洲最大的虚拟车辆开发研究中心。研究重点是汽车和铁路行业中数值模拟和硬件测试的紧密整合。这种方法促进了在定义的质量水平上的测试和验证过程的设计和自动化,从而使复杂的硬件软件系统的持续开发和验证。对以行业为导向的研究的重点使虚拟车辆成为未来车辆技术的创新催化剂。
图 1:左图:透明保护结构,具有可调节厚度的玻璃层(黄色)、粘合剂层(灰色)和聚合物背衬层(蓝色),以防止玻璃碎片脱落。中图:预测(模拟)透明保护结构在被弹丸穿透后将如何失效,以示例层厚度选择为例。右图:保护结构中的实际裂纹模式与使用材料力学模型进行数值模拟所预测的失效行为非常相似
氢是过去几年一直在观察到快速发展的最有希望的可再生能源之一。最近的意外爆炸事件以及相关的损害赔偿表明,氢安全性与潜在爆炸的重要性。本文介绍了有关氢爆炸的系统综述。对生产中的杂质和丰富氧气环境的存在,包括高压和超低温度,运输和消费过程的潜在爆炸场景。不同类型的氢气云爆炸包括膨胀和放射,爆炸和幻影到遗传转变(DDT)。对实验室和现场爆破测试,利用各种计算方法的数值模拟以及理论推导的数值模拟进行了现有研究。CFD建模目前是主要的研究方法之一,因为其成本效益,尽管模拟氢 - 空气云爆炸中存在的挑战与测试结果相比。除了氢气云的特性(例如浓度,大小和异质性)外,发现点火,通风和障碍物等环境因素也强烈影响氢空气云爆炸的负载特性。现有的预测方法用于估计包括TNT等效方法(TNT-EM),TNO多能法(TNO MEM)和Baker-Strehlow-Tang方法(BST)(BST)(BST)的氢气云爆炸的爆炸载荷。由于氢气云与固体爆炸物和常规易燃气体的遗传差异,这些方法的准确性仍然可疑,这需要进一步研究。关键字:氢气云;爆炸装载;超压预测方法;影响因素
满足政府法规 美国国防部、联邦航空管理局和食品药品管理局等政府监管机构已经制定并继续发展指导文件,将数值模拟模型作为满足监管要求的可靠证据来源。指导文件建议制造商将模型验证、确认和不确定性量化 (VVUQ) 作为其数值分析报告的一部分。SmartUQ 员工在 UQ 领域拥有丰富的专业知识,并了解 UQ 在 VVUQ 流程中的作用。SmartUQ 的专家可以根据政府监管指南帮助将 UQ 集成到贵公司的工程工作流程中。
本研究调查了在用于气态氢输送的钢管中使用氧气作为氢脆气相抑制剂的潜力。文中介绍了在气态氢氧混合物下进行的拉伸试验结果,分析了氧气浓度、总压力和应变速率的影响。此外,还介绍了一种数值模拟模型,该模型基于非局部 Gurson-Tvergaard-Needleman (GTN) 模型,结合氢扩散并结合“氧化层”边界条件。这项正在进行的研究的结果表明,在输送的氢气中添加少量氧气可以提高管道的耐久性。
随着对行业应用中电动机功率和效率的需求不断提高,电动机在操作过程中产生的热量已成为一个关键挑战。有效的冷却系统是为了维持电动机的性能和寿命。根据热电制冷原理制定了一种新的电机冷却系统。提出的热电冷却系统(TEC)的主要策略是使用热电冷却器(TEC)通过热传导原理冷却电动机。使用数值模拟和实验测量的组合来比较在不同的工作条件下的气冷和热电再进行的性能。实验和ANSYS模拟已显示
我们以独立的方式审查并扩展了基于使用随机状态的数值模拟方法的数学基础。通过计算物理相关的特性,例如大型单个粒子系统的密度,特定的热量,电流 - 电流相关性,密度 - 密度相关性和电子自旋谐振光谱。我们通过证明它可用于分析旨在在嘈杂的中间尺度量子处理器上实现量子至上的数值模拟和实验来探索随机状态技术的新应用。此外,我们表明随机技术的概念在量子信息理论中被证明是有用的。
使用波导模式的近场捕获和移动微粒可以实现稳定和紧凑的集成光学平台,以操纵,分类和研究单个微观对象。在这项工作中,研究了通过Bloch表面波在聚合物波中传播的一维光子晶体表面和位于波导表面上的光线的可能性。数值模拟。使用两光子激光光刻,在一维光子晶体的表面制造了Su-8聚合物波导。当Bloch表面波被激发时,聚苯乙烯微粒沿波导的运动被实验证明。