摘要 - 片上功率电网(PG)的摘要分析至关重要,但由于综合电路(IC)量表的迅速增长,在计算上具有挑战性。当前EDA软件采用的传统数值方法是准确但非常耗时的。为了实现IR滴的快速分析,已经引入了各种机器学习(ML)方法来解决数值方法的效率低下。但是,可解释性或可伸缩性问题一直在限制实际应用。在这项工作中,我们提出了IR融合,该IR融合旨在将数值方法与ML相结合,以实现静态IR滴分析中准确性和效率之间的权衡和互补性。具体而言,数值方法用于获得粗糙的解决方案,并利用ML模型进一步提高准确性。在我们的框架中,应用有效的数值求解器AMG-PCG用于获得粗糙的数值解决方案。然后,基于数值解决方案,采用了代表PG的多层结构的层次数值结构信息的融合,并设计了Inpection unet u-net模型,旨在捕获不同尺度上特征的详细信息和相互作用。为了应对PG设计的局限性和多样性,将增强的课程学习策略应用于培训阶段。对IR融合的评估表明,其准确性明显优于以前的基于ML的方法,同时需要在求解器上迭代较少的迭代才能达到相同的准确性,与数值方法相比。
部分微分方程是用于描述各种物理现象的基本数学工具,从流体动力学和热传导到量子力学和财务建模。解决PDE对于理解和预测这些系统的行为至关重要,但是传统的数值方法(例如有限差异,有限元和光谱方法)在处理复杂,高维问题时通常会遇到重大挑战。近年来,机器学习已成为对经典数值方法的有力替代方案或补充,提供了有效解决PDE的新方法。机器学习驱动的PDE的数值解决方案有可能通过提供更准确,更快和可扩展的解决方案来彻底改变计算科学。将机器学习与数值PDE求解器集成的关键动机之一是ML模型以高精度近似复杂函数及其导数的能力。神经网络,尤其是深度学习模型,在学习大型数据集中学习复杂的模式和关系方面取得了巨大的成功。