10 月,东卡罗来纳大学自豪地在橡树山高尔夫乡村俱乐部主办了 2024 年美国大联盟越野锦标赛。东卡罗来纳大学表现出色,现场气氛热烈,男子队夺得第十个冠军头衔(连续第三个冠军),女子队则获得了令人印象深刻的第三名,展现了她们的实力。
引用本文: 解盘石, 杨航, 伍永平, 等 . 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术 , 2024, 52(12): 259-271. XIE Panshi, YANG Hang, WU Yongping. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology, 2024, 52(12): 259-271.
一些研究小组曾尝试将钍原子核单独固定在电磁阱中,以研究它们。然而,托尔斯滕·舒姆和他的团队选择了一种完全不同的技术。“我们开发出了一种包含大量钍原子的晶体,”在维也纳开发了这些晶体并与 PTB 团队一起测量它们的 Fabian Schaden 解释说。“虽然这在技术上相当复杂,但它的优势在于,我们不仅可以用这种方式研究单个钍原子核,还可以用激光同时击中大约 10 的 17 次方个钍原子核——比我们银河系中的恒星数量多一百万倍。”大量的钍原子核放大了这种效应,缩短了所需的测量时间,并增加了实际发现能量跃迁的概率。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
1广东核科学省级核科学关键实验室,量子问题研究所,南部师范大学,广州510006,中国2广东港量子量子问题,南部核科学计算中心,南部核科学计算中心联合实验室,中国南部师范大学,Quangzhou 510006,510006,510006,510006,510006,Quantomic and Sateronsy,Quantomia of Qualtomiak and ofernosia北京师范大学物理学,北京100875,中国5高能源物理中心,北京大学,北京大学100871,中国6通广东量子量子事务联合实验室。中国师范大学,广州510006,中国