✉ 通信和材料索取请发送至 Lan Luan 或 Chong Xie。lan.luan@rice.edu;chongxie@rice.edu。作者贡献 CX 构思并组织了整个研究;ZZ、HZ、XL、LL 和 CX 设计了实验,所有作者均参与其中;ZZ 和 XL 在 CX 的监督下设计和制作了 NET 设备;DFL、JEC 和 LF 与 SpikeGadgets LLC 合作设计了堆叠头戴式记录系统;ZZ 和 XL 在 JEC 和 DFL 的帮助以及 CX 和 LF 的监督下设计了 NET 探头与头戴式记录系统的集成;ZZ 和 XL 在 CX 的监督下开发并执行了手术程序;ZZ、XL 和 HZ 在 LS 和 FH 的帮助以及 CX 和 LL 的监督下进行了动物神经记录实验; HZ 和 ZZ 开发并实施了数据预处理,由 CX 监督,并得到了 JEC 和 LF 的意见;ZZ 和 HZ 执行了数据后分析,由 LL 和 CX 监督,并得到了 LF 的意见;ZZ 执行了组织学研究,由 CX 监督;ZZ、LL 和 CX 撰写并修改了手稿,得到了所有作者的意见。
使用 SpCas9 核酸酶进行 ONE-seq 脱靶分析的结果 a,群图显示五个先前分析的 SpCas9 gRNA 的 ONE-seq 核酸酶分数。每个圆圈代表一个单独的 ONE-seq 文库成员。彩色圆圈代表先前确认的真正脱靶位点。未显示 ONE-seq 核酸酶分数低于 0.001 的位点。n/a,未在先前发表的 CIRCLE-seq 研究中进行验证。b,维恩图比较了 ONE-seq、CIRCLE-seq 和 Digenome-seq(空心彩色圆圈)提名先前由 GUIDE-seq(实心紫色圆圈)验证的真正脱靶位点的能力。所有被视为由 ONE-seq 验证的位点的 ONE-seq 核酸酶分数均 >0.01。
针对编码基因组通过CRISPR/ CAS9技术引入核苷酸缺失/插入已成为一种标准程序。它迅速产生了多种方法,例如素数编辑,顶点接近标记或同源性修复,但是,支持生物信息学工具的支持落后于此。新的CRISPR/CAS9应用程序通常会重新征询特定的GRNA设计功能,并且通常缺少一种通用工具。在这里,我们介绍了R/生物导体工具MulticRispr,旨在设计单个grnas和复杂的grna libraries。包装易于使用;在效率和特定的效率上,检测,分数和锻炼;每个目标或CRISPR/CAS9序列可视化和聚集结果;最后返回GRNA的范围和序列。是通用的,多晶状体定义的,并实现了基因组算术框架,作为便利适应最近引入的技术的基础,例如素数编辑或尚未出现。其性能和设计构想(例如目标集) - 特定过滤渲染多晶层在处理类似筛选的方法时选择的工具。
近年来,通过 Crispr/Cas9 技术靶向编码基因组引入单核苷酸缺失/插入已成为一种标准程序。它迅速催生了多种方法,例如 Prime Editing、Crispr/Cas9 辅助 APEX 邻近标记蛋白质或同源定向修复 (HDR),但支持这些方法的生物信息学工具却落后了。新应用通常需要特定的向导 RNA (gRNA) 设计功能,而通用的 gRNA 设计工具却严重缺失。在这里,我们回顾了 gRNA 设计软件并介绍了 multicrispr,这是一种基于 R 的工具,旨在设计单个 gRNA 以及并行靶向许多基因组位点的 gRNA 库。该软件包易于使用,可检测、评分和过滤 gRNA 的效率和特异性,可视化和汇总每个目标或 Crispr/Cas9 序列的结果,最后返回基因组范围以及首选的、无脱靶 gRNA 序列。为了通用,multicrispr 定义并实施了一个基因组算法框架,作为轻松适应尚未出现的技术的基础。其性能和新的 gRNA 设计概念(例如针对 gRNA 库的目标集特定过滤)使 multicrispr 成为处理类似筛选方法时的首选工具。