摘要背景:对于延时摄影技术(TLT)与胚胎倍性状态之间的关联,目前尚未完全阐明。TLT具有数据量大、非侵入性的特点。如果想从TLT准确预测胚胎倍性状态,人工智能(AI)技术是一个不错的选择。但目前AI在该领域的工作需要加强。方法:研究共纳入2018年4月至2019年11月的469个植入前遗传学检测(PGT)周期和1803个囊胚。所有胚胎图像均在受精后5或6天内通过延时显微镜系统捕获,然后进行活检。所有整倍体胚胎或非整倍体胚胎均用作数据集。数据集分为训练集、验证集和测试集。训练集主要用于模型训练,验证集主要用于调整模型的超参数和对模型进行初步评估,测试集用于评估模型的泛化能力。为了更好的验证,我们使用了训练数据之外的数据进行外部验证。从2019年12月至2020年12月共155个PGT周期,523个囊胚被纳入验证过程。结果:整倍体预测算法(EPA)能够在测试数据集上预测整倍体,曲线下面积(AUC)为0.80。结论:TLT孵化器已逐渐成为生殖中心的选择。我们的AI模型EPA可以根据TLT数据很好地预测胚胎的倍性。我们希望该系统将来可以服务于所有体外受精和胚胎移植(IVF-ET)患者,让胚胎学家在选择最佳胚胎进行移植时拥有更多非侵入性辅助手段。关键词:AI,倍性状态,延时,PGT,预测
急性呼吸道感染(ARIS)是整个生命周期发病率和死亡率的主要原因。在全球范围内,估计每年发生的170亿ARI,占儿童死亡人数240万人(> 740,000人死亡)[1]。尽管这些ARI中的大多数是由呼吸道病毒引起的,但大多数严重或致命的病例是由细菌呼吸道病原体引起的。越来越多地,上呼吸道(URT)中的共生微生物会影响呼吸道病毒感染的风险和严重程度,以及细菌病原体对定殖和感染的抗性。因此,人们对利用这些微生物 - 微生物或微生物 - 主机相互作用的兴趣越来越多,以制定新的ARI策略或治疗[2]。尽管益生菌的现代历史可以追溯到一个多世纪以来,但活细菌菌株的鼻内给药将代表我们预防和治疗ARIS的方法的转变。这种鼻腔益生菌的必要特征将包括粘附上皮并成功地定居人类的能力,缺乏对呼吸性上皮细胞的细胞毒性,对地平线基因转移和移动遗传元件的某种程度的抵抗力,低倾向,低倾向,可侵犯宿主组织,使宿主的组织以及可用的可用抗药性可用的抗生素。下面,我们描述了一种研究的细菌物种,即dolosigranulum pigrum,越来越多地将其视为人类URT中的基石物种,也被视为预防ARI预防或治疗的有希望的鼻益生菌候选者。
引言人线粒体DNA(mtDNA)是圆形双链体,由16 569个碱基对(BPS)组成。1 mtDNA变体是在没有进行重组的情况下进行母体传播的,从而使它们在连续的世代上积累。mtDNA的这种特征使其成为研究人群遗传学,系统发育进化,人类迁移以及医学和法医研究的流行工具。许多关于mtDNA分析的研究已经发表。2-11线粒体单倍群包括具有相同累积mtDNA变体的个体,通常在特定地理区域中发现,并且可以通过母体谱系进行追踪。这些单倍体在线粒体系统发育树中构成不同的分支。某些单倍体主要与特定地理区域相关。单倍群L0 – L6通常在撒哈拉以南非洲人中发现,而R5 – R8,M2 – M6和M4 –
活体大脑会持续输出微弱的电信号,通常称为脑电波。这些信号的记录称为脑电图 (EEG),是大脑皮层神经元所有突触后电位 (EPSP 和 IPSP) 的总和。这些信号的幅度非常小,以微伏为单位,即百万分之一伏或千分之一毫伏。虽然它们很小,但可以准确地检测和记录这些信号。拾取这些信号的电极附在头皮表面。然后将信号放大数千倍。然后用脑电图仪(一种记录脑电波的设备)记录放大的信号。iWorx 数据记录单元将在本章的实验中充当放大器和脑电图仪。
过量的氮会促进水稻非生产性分蘖的形成,从而降低氮利用效率 (NUE)。通过平衡氮吸收和生产性分蘖的形成来开发高 NUE 水稻品种仍然是一个长期挑战,但这两个过程如何在水稻中协调仍然难以捉摸。在这里,我们将转录因子 OsGATA8 确定为水稻氮吸收和分蘖形成的关键协调因子。OsGATA8 通过抑制铵转运蛋白基因 OsAMT3.2 的转录来负向调节氮吸收。同时,它通过抑制分蘖的负调节因子 OsTCP19 的转录来促进分蘖的形成。我们将 OsGATA8 -H 确定为高 NUE 单倍型,具有增强的氮吸收和更高比例的生产性分蘖。OsGATA8- H的地理分布及其在历史种质中的频率变化表明其适应肥沃的土壤。总体而言,这项研究为NUE的调控提供了分子和进化方面的见解,并有助于培育具有更高NUE的水稻品种。
结果:通过采用三重分箱方法,我们能够利用长读技术和全基因组染色质相互作用数据 (Hi-C) 组装出高质量的染色体水平 F1 组装体和 2 个亲本单倍型组装体。从总共 40 条染色体 (2n = 80) 中,我们在单个支架中捕获了 35 条染色体,与旧的组装体相比,基因组完整性和连续性得到了很大的改善。这 3 个组装体的质量高于之前的草图质量组装体,与鸡组装体 (GRCg7) 相当,最大的重叠群 N50 (26.6 Mb) 和可比的 BUSCO 基因集完整性得分 (96-97%) 也显示出了这一点。比较分析证实了之前发现的 Z 染色体上约 19 Mbp 的大倒位,而其他鸡形目动物中没有发现这种倒位。已发现亲本单倍型之间的结构变异,这为育种提供了潜在的新目标基因。
双倍(DH)技术更常规地应用于玉米杂种繁殖中。但是,单倍诱导和识别的某些问题持续存在,需要解决以优化DH生产。我们的目标是使用taqman测定法实施QHIR1(MTL/ ZMPLA1/ NLD)和QHIR8(ZMDMP)的同时进行标记辅助选择(MAS),以在F 2代生成四个BHI306衍生的热带热带×温度诱导剂中。我们还旨在评估F 3代的单倍体诱导率(HIR)作为对MAS的表型反应。我们强调了每个诱导剂家族的HIR的显着增加。携带QHIR1和QHIR8的基因型比仅携带QHIR1的基因型表现出1-3倍的单倍体频率。此外,QHIR1标记还用于在种植后7天验证推定的单倍体幼苗。流式细胞仪分析是评估R1-NJ和QHIR1标记的准确性的黄金标准测试。QHIR1标记显示出很高的精度,并且可以在早期幼苗阶段通过R1-NJ标记在早期幼苗阶段进行多个单倍体识别。
手稿:所有共同作者玛丽亚·格拉西亚·朗卡罗洛(Maria Grazia Roncarolo)手稿写作:沃尔克·威伯金(Volker Wiebking),马修·波特斯(Matthew Porteus)评论Wiebking,Matthew Porteus,Alice Bentaira监督:爱丽丝·伯恩塔(Alice Bentausis):爱丽丝·贝纳塔(Alice Bnateis):爱丽丝·伯恩塔(Alice Berainda),马修·托尔特(Matthew) Nathalie Mostrel Off-target analysis: Ciaran M. Lee and Gang Bao Data Matthew Porteus In vitro studies: Volker Wiebking, Premanjali Lahiri In vivo studies: Volker Conception and design: Volker Wiebking, Rasmus Bak, Alice Bertaina and Contributions:
(a)Q. Alba基因组组装的HAPA和HAPB之间的结构同步。两个反转超过1 Mb:3染色体上的1.1 Mb反转和染色体上的1.9 Mb反转。35S阵列的位置用红色正方形表示,5S阵列用红色圆圈表示。(b)中期染色体用两对35(绿色)和一对5s(红色)rDNA信号扩散。小型35S信号由白色箭头指示。
鳄梨 (Persea americana) 是木兰科植物的一种,木兰科植物是被子植物的早期分支谱系,其果实营养丰富,在全球具有很高的价值。在这里,我们报告了商业鳄梨品种 Hass 的染色体水平基因组组装,该品种占世界鳄梨消费量的 80%。使用由遗传图谱支持的先前发布的基因组版本进一步组装由 Pacific Biosciences HiFi 读数产生的 DNA 重叠群。总组装体为 913 Mb,重叠群 N50 为 84 Mb。分配给 12 条染色体的重叠群代表 874 Mb,覆盖了 98.8% 的胚性植物基准单拷贝基因。蛋白质编码序列注释确定了 48 915 个鳄梨基因,其中 39 207 个可归因于功能。基因组含有 62.6% 的重复元素。研究了基因组中感兴趣的特定生物合成途径。分析表明,鳄梨中庚糖生物合成的主要途径可能是通过景天庚酮糖 1,7 双磷酸,而不是通过其他途径。内切葡聚糖酶基因数量众多,与鳄梨使用纤维素酶催熟果实一致。尽管经历了多次基因组复制事件,但鳄梨基因组似乎在同源染色体之间有有限数量的易位。与相关物种的蛋白质组聚类允许识别鳄梨和樟科其他成员特有的基因,以及在单子叶植物和真双子叶植物分化前或分化时分化的物种特有的基因。该基因组提供了一种工具,以支持未来开发产量和果实质量更高的优质鳄梨品种。