目前,全球核工业的发展受到两个主要因素的阻碍:有限的自然铀资源和用于支出核燃料管理的递延解决方案的存在。可以通过开发和工业实施封闭的核燃料循环技术来解决这些问题,这些技术涉及重新处理产品的分馏以及快速的反应堆技术,这使得可以补充裂变材料并焚化寿命长的小actinides,并具有高水平的放射性。这还有助于解决推迟的核燃料积累问题:重新加工的铀被回收在热中子反应堆中;快速反应堆使用p p和次肌动物。残留废物达到放射学和辐射等效到自然铀所需的时间减少了数千倍,其量也大大减少了。
• 实现发票处理等手动流程的自动化。采用应付账款 (AP) 自动化的中小企业报告称,生产率提高了 2 至 3 倍,从而为其会计团队创造了更多能力。• 我们的异常值检测解决方案是首个用于总账错误检测的实时 AI 驱动工具,每周审查超过 1500 万笔交易,帮助会计团队在发布之前发现并纠正数千个会计错误。• 我们正在使用 AI 为我们的碳会计解决方案 Sage Earth 提供支持,根据特定的碳排放类别对费用进行分类,以便我们能够更准确地预测其对环境的影响。这有助于中小企业管理和减少碳排放。• Sage Accounting 使用 AI 自动对银行交易进行分类,以进行数字纳税申报。
通过仅使用蛋白质和化合物的一维结构进行分析,可以极快地进行计算(比对接模拟快 2,000 倍以上),同时达到与使用现有三维结构进行分析相同的精度。
超维计算 (HDC) 是一种新兴的计算框架,其灵感来自大脑,它对具有数千个维度的向量进行操作以模拟认知。与对数字进行操作的传统计算框架不同,HDC 与大脑一样,使用高维随机向量,并且能够进行一次性学习。HDC 基于一组定义明确的算术运算,具有很强的错误恢复能力。HDC 的核心操作以批量逐位方式操纵 HD 向量,提供了许多利用并行性的机会。不幸的是,在传统的冯·诺依曼架构中,HD 向量在处理器和内存之间的连续移动会使认知任务变得非常缓慢且耗能。硬件加速器只能略微改善相关指标。相比之下,即使是内存中 HDC 框架的部分实现也可以提供相当大的性能/能量增益,正如之前使用忆阻器的工作所证明的那样。本文介绍了一种基于赛道内存 (RTM) 的架构,用于在内存中执行和加速整个 HDC 框架。所提出的解决方案利用 RTM 中跨多个域的读取操作(称为横向读取 (TR))来实现异或 (XOR) 和加法运算,从而只需极少的额外 CMOS 电路。为了最大限度地减少 CMOS 电路开销,提出了一种基于 RTM 纳米线的计数机制。以语言识别为示例工作负载,所提出的 RTM HDC 系统与最先进的内存实现相比,将能耗降低了 8.6 倍。与使用 FPGA 实现的专用硬件设计相比,基于 RTM 的 HDC 处理在整体运行时间和能耗方面分别实现了 7.8 倍和 5.3 倍的提升。
稀有变异难以检测是传统全基因组关联研究 (GWAS) 面临的问题之一。这一问题与单倍型等由多个等位基因组成的复杂基因组成密切相关。为解决这一问题,已提出了多种单核苷酸多态性 (SNP) 集方法。但这些方法很少与单倍型相关讨论。在本研究中,我们开发了一种新的 SNP 集方法“RAINBOW”,并将该方法应用于基于单倍型的 GWAS,将单倍型块视为 SNP 集。结合单倍型块估计和 SNP 集 GWAS,可在无需先前单倍型信息的情况下进行基于单倍型的 GWAS。我们准备了 100 组稻 (Oryza sativa subsp.) 的模拟表型数据和真实标记基因型数据集。 indica,并对数据集进行 GWAS。我们比较了我们的方法、传统的单 SNP GWAS、传统的基于单倍型的 GWAS 以及传统的 SNP 集 GWAS 的功效。结果显示我们的方法在三个方面优于这些方法:(1)控制假阳性;(2)如果数据集中对因果变异进行了基因分型,则可以不依赖连锁不平衡来检测因果变异;(3)它显示出比其他方法更高的功效,即它能够检测到其他方法未能检测到的因果变异,主要是当因果变异位置非常接近且其作用方向相反时。通过在本研究中使用 SNP 集方法,我们期望不仅可以检测出罕见变异,还可以检测出具有复杂机制的基因,例如具有多个因果变异的基因。 RAINBOW 是作为名为“RAINBOWR”的 R 包实现的,可从 CRAN(https://cran.r-project.org/web/packages/RAINBOWR/index.html)和 GitHub(https://github.com/KosukeHamazaki/RAINBOWR)获取。
✉ 通信和材料索取请发送至 Lan Luan 或 Chong Xie。lan.luan@rice.edu;chongxie@rice.edu。作者贡献 CX 构思并组织了整个研究;ZZ、HZ、XL、LL 和 CX 设计了实验,所有作者均参与其中;ZZ 和 XL 在 CX 的监督下设计和制作了 NET 设备;DFL、JEC 和 LF 与 SpikeGadgets LLC 合作设计了堆叠头戴式记录系统;ZZ 和 XL 在 JEC 和 DFL 的帮助以及 CX 和 LF 的监督下设计了 NET 探头与头戴式记录系统的集成;ZZ 和 XL 在 CX 的监督下开发并执行了手术程序;ZZ、XL 和 HZ 在 LS 和 FH 的帮助以及 CX 和 LL 的监督下进行了动物神经记录实验; HZ 和 ZZ 开发并实施了数据预处理,由 CX 监督,并得到了 JEC 和 LF 的意见;ZZ 和 HZ 执行了数据后分析,由 LL 和 CX 监督,并得到了 LF 的意见;ZZ 执行了组织学研究,由 CX 监督;ZZ、LL 和 CX 撰写并修改了手稿,得到了所有作者的意见。
超维计算 (HDC) 是一种新兴的计算框架,其灵感来自大脑,它对具有数千个维度的向量进行操作以模拟认知。与对数字进行操作的传统计算框架不同,HDC 与大脑一样,使用高维随机向量,并且能够进行一次性学习。HDC 基于一组定义明确的算术运算,具有很强的错误恢复能力。HDC 的核心操作以批量逐位方式操纵 HD 向量,提供了许多利用并行性的机会。不幸的是,在传统的冯·诺依曼架构中,HD 向量在处理器和内存之间的连续移动会使认知任务变得非常缓慢且耗能。硬件加速器只能略微改善相关指标。相比之下,即使是内存中 HDC 框架的部分实现也可以提供相当大的性能/能量增益,正如先前使用忆阻器的工作所证明的那样。本文介绍了一种基于赛道内存 (RTM) 的架构,用于在内存中执行和加速整个 HDC 框架。所提出的解决方案利用 RTM 中跨多个域的读取操作(称为横向读取 (TR))来实现异或 (XOR) 和加法运算,从而只需要极少的额外 CMOS 电路。为了最大限度地减少 CMOS 电路开销,提出了一种基于 RTM 纳米线的计数机制。以语言识别为示例工作负载,与最先进的内存实现相比,所提出的 RTM HDC 系统将能耗降低了 8.6 倍。与使用 FPGA 实现的专用硬件设计相比,基于 RTM 的 HDC 处理在整体运行时间和能耗方面分别展示了 7.8 倍和 5.3 倍的改进。
改变生活的肠癌治疗方法被加入 PBS,惠及数千名澳大利亚人 澳大利亚皇家病理学院 (RCPA) 支持今年将针对转移性结直肠癌 (mCRC) 的靶向治疗药物 Braftovi 添加到药品福利计划 (PBS) 中,此举将改善澳大利亚数千名患者的健康状况。RCPA 研究员 Anthony Gill 教授解释说,将 Braftovi 添加到 PBS 是一个令人鼓舞的进步,将显著改善患者的健康状况。“与 PBS 列出的抗癌药物西妥昔单抗联合使用,Braftovi 有可能减缓或阻止癌症的生长,并可以帮助一些晚期 mCRC 患者延长生存期并提高生活质量。将 Braftovi 添加到 PBS 中极大地改善了患者的使用机会,这意味着现在每个疗程的费用为 42.50 澳元或 6.80 澳元(优惠卡持卡人)而不是像以前那样每个疗程 33,600 澳元,”吉尔教授说。为了确定是否有资格通过 PBS 使用 Braftovi,患者必须首先进行癌症检测,以检查 RAS 基因(KRAS 和 NRAS)和 BRAF 基因是否存在突变。在 RCPA 向医疗服务咨询委员会 (MSAC) 提出申请后,此项检测现已在医疗保险福利计划 (MBS) 上为 mCRC 患者提供。“多年来,mCRC 患者一直有资格通过 MBS 使用一种名为西妥昔单抗的药物,但前提是他们的肿瘤没有 KRAS 或 NRAS 基因突变。这是因为我们知道西妥昔单抗对具有这些突变的肿瘤不起作用。我们目前所知的是,肿瘤中存在 BRAF 突变的 mCRC 患者对西妥昔单抗的反应不佳,即使他们没有 RAS 突变。然而,我们现在知道,当西妥昔单抗与 Braftovi(一种 BRAF 抑制剂)联合使用时,这些患者会对西妥昔单抗有反应。 “为了获得这种治疗,患者必须对其结肠癌进行 RAS 和 BRAF 突变检测。PBS 已经为 mCRC 的 RAS 突变检测提供资助,但现在这项资助已扩大到包括增加 BRAF 突变检测,大大提高了有需要的人的可及性。 “这又是一个例子,说明准确且易于获取的病理学检测如何指导如此多疾病的治疗。它不仅能让我们在正确的时间为正确的患者提供正确的治疗,同样重要的是,它还能让我们建议患者不要使用对他们无效的疗法来治疗他们。例如,我们知道,如果肿瘤有 RAS 突变或缺乏 BRAF 突变,这种治疗将不会有帮助,”吉尔教授说。自 20 世纪 90 年代中期以来,50 岁以下人群中新的转移性结直肠癌病例数量一直在增加。现在,mCRC 是最致命的癌症,也是 25-44 岁澳大利亚人死亡的第五大原因。每年有超过 15,000 名澳大利亚人被诊断出患有 CRC,而且这一数字还在不断上升。BRAF 基因突变使 mCRC 更具侵袭性,对化疗更具抵抗力,这些患者的治疗选择极其有限。这种突变影响了大约十分之一的澳大利亚晚期 mCRC 患者,导致预后不良,平均存活时间为
___________________________________________________________________________________ 早上好,劳伦斯参议员、齐格勒众议员以及能源、公用事业和技术联合常设委员会 (EUT) 的成员。 我叫比尔韦伯,是缅因州波特兰市的居民。我支持 LD 2077,因为我们迫切需要采取有意义的行动来应对气候变化的毁灭性影响。 在波特兰,我与波特兰气候行动小组 (PCAT) 合作,我们有一个全面的气候行动计划,名为“一个气候未来”。该计划是在 18 个月内与数千名社区成员协商后制定的,并得到了市议会的大力支持。该计划的主要目标是到 2050 年将温室气体排放量减少 80%。为实现这一目标,我们必须开始逐步停止使用天然气。天然气中含有甲烷 (CH4),这是一种温室气体排放的超级污染物,其在空气中吸热的能力是二氧化碳的 28 倍多。必须认识到,LD 2077 不会消除天然气分布,但会启动最终逐步淘汰化石燃料的长期缓慢趋势。