摘要:基于事件相关电位(ERP)的脑机接口(BCI)应用于现实环境时性能会下降,限制了BCI的通用性。声音是日常生活中常见的噪声,其是否对BCI的性能下降有影响尚不清楚。本研究设计了一个视听BCI任务,要求受试者集中注意力于视觉界面输出命令,同时根据听觉故事进行计数。故事以三种速度播放以引起不同的工作负荷。在相同或不同工作负荷下收集的数据用于训练和测试分类器。结果表明,当故事播放速度加快时,枕顶区 P300 和 N200 电位幅值分别下降 0.86 µV(p=0.0239)和 0.69 µV(p=0.0158),导致准确率下降 5.95%(p=0.0101),信息传输速率下降 9.53 bits/min(p=0.0416)。使用高工作量数据进行性能测试时,用高工作量数据训练的分类器比用低工作量数据训练的分类器获得更高的准确率。结果表明,声音可以通过增加工作量来影响视觉 ERP-BCI。训练数据和测试数据的高相似性与 ERP 幅值对于获得高性能同样重要,这为我们提供了如何使 ERP-BCI 具有泛化能力的见解。
-作者:Ellen Watters 恰逢春天到来之际,大卫·霍克尼 (David Hockney) 来到剑桥,在 Heong 画廊和菲茨威廉博物馆举办了两场展览。尽管 Heong 画廊是两个空间中较小的一个,但它展示了霍克尼的眼睛:描绘的艺术和技术 (2022 年 8 月 29 日结束) 的很大一部分。从 1959 年开始在皇家艺术学院学习后不久创作的木炭画,到他最近的 iPad 画作,展览展示了霍克尼作为空间探索者,以及如何在各种媒介中在平面上描绘它。两幅 60 年代中期的丙烯画,《被艺术装置包围的肖像》(1965 年) 和《亚利桑那》(1964 年),是霍克尼创造空间、从想象中汲取灵感并思考色调和颜色排列可以代表物体的艺术奥秘的典型例子。在这两幅画中,霍克尼利用了空白空间的潜力。与此同时,《大峡谷 I》(2017 年)是一幅充满色彩和图案的画布。画布本身的规模和不寻常的形状有助于营造出所描绘空间——大峡谷——的极度广阔感。霍克尼不仅捕捉空间,还使用 3D 软件在令人着迷的摄影画作《观众观看带有头骨和镜子的现成品》(2018 年)中构建空间。
闭合阈值,73 通用格式,323 紧凑试件,87 紧凑拉伸试件,457,557 微拉伸,221 柔顺性,525 压缩预裂,43 简洁格式,323 恒幅载荷,151 基于约束的失效评估,245 CmTelation,525 腐蚀,355 裂纹,309 裂纹停止,539 裂纹分支,491 裂纹闭合,3,22,60,405,415,491,525,557 塑性诱导,203 裂纹深度,539 裂纹前沿形状,506 裂纹扩展,138,167,203,221,355,368,457,491,506 机制, 22,557 平面外,124 速率,60,124,281
闭合阈值,73 通用格式,323 紧凑试件,87 紧凑拉伸试件,457,557 微拉伸,221 柔顺性,525 压缩预裂,43 简洁格式,323 恒幅载荷,151 基于约束的失效评估,245 CmTelation,525 腐蚀,355 裂纹,309 裂纹停止,539 裂纹分支,491 裂纹闭合,3,22,60,405,415,491,525,557 塑性诱导,203 裂纹深度,539 裂纹前沿形状,506 裂纹扩展,138,167,203,221,355,368,457,491,506 机制, 22,557 平面外,124 速率,60,124,281
学校严格遵守官方机构规定的所有措施。除此之外,学校还实施并继续实施旨在防止新型冠状病毒传播的其他措施。这些措施根据疫情的新数据进行了调整,同时就与此事直接或间接相关的问题与学院社区成员保持开放的沟通渠道。在安全措施方面,我们学校在希腊所有中学中处于领先地位。我们早上 6:30 给家长发短信,让他们测量孩子的体温,并提醒他们,未经体温检查,不得上车或入学。所有学生和教职员工都必须在课堂上和课间休息时一直戴着口罩。未接种疫苗的学生每周必须进行多次自我检测。我们六次为营地的所有教职员工和志愿者学生提供 PCR 检测。我们印刷了约 60 份来自美国媒体的 20 幅漫画(共 1200 幅),鼓励接种疫苗,并将它们张贴在 Psychico 校园的所有公告板上。我们根据疫情的发展保持警惕和灵活性,并采取了超出政府的措施。追踪患病者的密切接触者每天花费了指导委员会成员的大量时间。通知家长和老师的方式始终是持续和透明的。我们定期收到杰出医生和传染病专家的最新消息,他们为学院大家庭带来了最新、最有效的病毒预防建议,Vana Papaevaggelou 博士和 Panagiotis Gargalianos 博士各两次,我非常感谢他们。我还要感谢雅典学院医疗服务部门和 Antonis Makris 博士以及 Covid-19 委员会,他们多次召开会议并制定了有关疫情所有问题的学校政策和措施。
SCI-12 工作组的成立是为了满足这一需求。该任务仅限于摧毁人机交互成像系统,特别是肉眼、直视光学和电光成像系统。没有检查非成像传感器和自动镜头检测。为了便于客观评估替代方法,来自北约成员国的一些研究人员被邀请将他们喜欢的方法应用于 44 幅军用车辆作战配置的标准图像集,这些图像中包含与人类观察员在作战中的表现相关的数据。搜索和目标获取均可用。 1999 年 6 月在荷兰乌得勒支举行的研讨会上讨论了研究结果。
隧道场效应晶体管 (TFET) 被认为是未来低功耗高速逻辑应用中最有前途的器件之一,它将取代传统的金属氧化物半导体场效应晶体管 (MOSFET)。这是因为随着 MOSFET 尺寸逐年减小,以实现更快的速度和更低的功耗,并且目前正朝着纳米领域迈进,这导致 MOSFET 的性能受到限制。在缩小 MOSFET 尺寸的同时,面临着漏电流增加、短沟道效应 (SCE) 和器件制造复杂性等几个瓶颈。因此,基于隧道现象原理工作的 TFET 已被提议作为替代 MOSFET 的器件之一,后者基于热电子发射原理工作,将器件的亚阈值摆幅限制在 60mV/十倍。 TFET 具有多种特性,例如不受大多数短沟道效应影响、更低的漏电流、低于 60mV/dec 的更低亚阈值摆幅、更低的阈值电压和更高的关断电流与导通电流之比。然而,TFET 也存在一些缺点,例如掺杂 TFET 的制造工艺复杂,会导致各种缺陷。这些问题可以通过使用无掺杂技术来克服。该技术有助于生产缺陷更少、更经济的设备。另一个缺点是 TFET 表现出较低的导通电流。异质材料 TFET 可用于解决低离子问题。为了更好地控制异质材料 TFET 沟道,提出了双栅极。亚阈值摆幅 (SS) 是决定器件性能的重要参数之一。通过降低 SS,器件性能将在更低的漏电流、更好的离子/关断比和更低的能量方面更好。这个项目有 3 个目标:建模和模拟异质材料双栅极无掺杂 TFET (HTDGDL- TFET)。比较 Ge、Si 和 GaAs 作为源区材料的 TFET 性能。将 HTDGDL-TFET 用作数字反相器。将使用 Silvaco TCAD 工具进行模拟。已成功建模单栅极和双栅极 HTDL-TFET。已为该项目进行了 4 个模拟测试用例,以选择所提 TFET 的最佳结构。使用 Vth、SS、Ion、Ioff 和 Ion/Ioff 比等几个重要参数来测量 TFET 的性能。在所有 4 个测试用例中,最佳 TFET 结构以 Ge 为源区材料,源区和漏区载流子浓度为 1 × 10 19 𝑐𝑚 −3,沟道载流子浓度为 1 × 10 17 𝑐𝑚 −3,且无掺杂。这是因为器件的 Vth 值为 0.97V,SS 值为 15mV/dec,Ion/Ioff 比为 7 × 10 11 。设计的 TFET 反相器的传播延迟比 [21] 中的反相器短 75 倍,比市场反相器 [SN74AUC1G14DBVR] 短 29 倍。本文还提出了一些未来的工作。