� 高性能浮点数字信号处理器 (DSP) – TMS320C30-50 (5 V) 40 纳秒指令周期时间 275 MOPS、50 MFLOPS、25 MIPS – TMS320C30-40 (5 V) 50 纳秒指令周期时间 220 MOPS、40 MFLOPS、20 MIPS – TMS320C30-33 (5 V) 60 纳秒指令周期时间 183.3 MOPS、33.3 MFLOPS、16.7 MIPS – TMS320C30-27 (5 V) 74 纳秒指令周期时间 148.5 MOPS、27 MFLOPS、13.5 MIPS � 32 位高性能 CPU � 16/32 位整数和 32/40 位浮点运算 � 32 位指令字,24 位地址 � 两个 1K × 32 位单周期双访问片上 RAM 块 � 一个 4K × 32 位单周期双访问片上 ROM 块 � 片上存储器映射外设: – 两个串行端口 – 两个 32 位计时器 – 单通道直接存储器访问 (DMA) 协处理器,用于并发 I/O 和 CPU 操作
1. 介绍 TI 和 ADI 可编程 DSP 处理器的架构特点。2. 回顾数字变换技术。3. 给出 DSP 处理器架构的实际例子,以便更好地理解。4. 使用 DSP 处理器的指令集开发编程知识。5. 了解与内存和 I/O 设备的接口技术。第一单元:数字信号处理简介:简介、数字信号处理系统、采样过程、离散时间序列。离散傅里叶变换 (DFT) 和快速傅里叶变换 (FFT)、线性时不变系统、数字滤波器、抽取和插值。DSP 实现中的计算精度:DSP 系统中信号和系数的数字格式、动态范围和精度、DSP 实现中的错误源、A/D 转换错误、DSP 计算错误、D/A 转换错误、补偿滤波器。第二单元:可编程 DSP 设备的架构:基本架构特征、DSP 计算构建块、总线架构和内存、数据寻址能力、地址生成单元、可编程性和程序执行、速度问题、外部接口功能。第三单元:可编程数字信号处理器:商用数字信号处理设备、TMS320C54XX DSP 的数据寻址模式、TMS320C54XX 处理器的数据寻址模式、TMS320C54XX 处理器的内存空间、程序控制、TMS320C54XX 指令和编程、片上外设、TMS320C54XX 处理器的中断、TMS320C54XX 处理器的流水线操作。单元 – IV:Analog Devices 系列 DSP 器件:Analog Devices 系列 DSP 器件 – ALU 和 MAC 框图、移位器指令、ADSP 2100 的基本架构、ADSP-2181 高性能处理器。Blackfin 处理器简介 - Blackfin 处理器、微信号架构简介、硬件处理单元和寄存器文件概述、地址算术单元、控制单元、
简介................................................................................................................................................................ 1 描述................................................................................................................................................................ 1 架构................................................................................................................................................................... 5 控制运算单元 (CAU)...................................................................................................................................... 5 数据运算单元 (DAU)..................................................................................................................................... 5 内部和外部存储器...................................................................................................................................... 5 串行 I/O 单元 (SIO)...................................................................................................................................... 6 并行 I/O 单元 (PIO)...................................................................................................................................... 6 存储器配置............................................................................................................................................. 6 存储器寻址.............................................................................................................................................
后来,为了提高性能以及开拓新市场,微处理器制造商对其设计进行了专门化。第一个微控制器,即德州仪器的 TMS1000,于 1974 年推出。微控制器不仅在硅片上拥有 CPU,还集成了许多外设(内存、并行端口、模拟数字转换器等)。本质上,它们构成了集成在同一硅片上的完整微型计算机。在核心 CPU 上添加外设使微控制器在必须保持低成本、小尺寸和低功耗的嵌入式系统应用中特别高效。例如,微波炉控制单元是 TMS1000 微控制器的首批目标应用之一。20 世纪 80 年代,英特尔推出了 8748 微控制器系列。该系列集成了许多外设,包括可由开发人员擦除和重新编程的程序存储器。这些特性降低了微控制器系统的开发成本,并使得微控制器可以在小批量嵌入式应用中使用。
未经 NEC Electronics Inc. 事先书面同意,不得以任何形式或任何方式复制或复制本文档的任何部分。本文档中的信息如有更改,恕不另行通知。NEC Electronics Inc. 销售的设备受 NEC Electronics Inc. 中出现的保修和专利赔偿条款的保护。仅限销售条款和条件。NEC Electronics Inc. 对此处列出的信息或所述设备不受专利侵权不作任何明示、法定、暗示或描述的保证。NEC Electronics Inc. 不对适销性或适用于任何目的作任何保证。NEC Electronics Inc. 对本文档中可能出现的任何错误不承担任何责任。NEC Electronics Inc. 不承诺更新或保持本文档中包含的信息为最新信息。
摘要 数字信号处理 (DSP) 是一种强大的技术,它有助于使用计算机理解各种信号,如声音和图像。本综述论文解释了 DSP 的含义,展示了它如何处理和增强信号。它探讨了广泛的信号处理方法,将它们从基本的降噪到高级机器学习算法进行分类,以及它们目前如何用于提高音频、图像、医疗数据和其他控制系统的质量。本文进一步研究了信号处理技术,全面了解了 DSP 应用中采用的各种方法。此外,它不仅解决了先进 DSP 系统的进步,还解决了其缺点,为克服挑战和优化性能提供了深刻的建议。本综述还包括 DSP 方法的类别,提供了该领域内不同方法的结构化概述。它提供了对 DSP、其实际用途及其在数字时代令人兴奋的潜力的清晰而简洁的理解
dsPIC30F 和 dsPIC33F 器件非常适合需要比基本微控制器更多的功能的电机。无论您需要更多的计算能力还是完整的 DSP 功能,这些器件都能满足您的需求。将数字信号控制应用于无传感器控制应用、精确速度/位置/伺服控制、扭矩管理、变速电机、高 RPM 电机、可变负载应用、降噪或提高能效。无刷直流、交流感应或开关磁阻电机是这些控制器系列的理想选择。有关 Microchip 电机控制功能的更多信息,请访问电机控制设计中心 www.microchip.com/motor。
80 ns 指令周期时间 544 字片上数据 RAM 4K 字片上安全程序 EPROM (TMS320E25) 4K 字片上程序 ROM (TMS320C25) 128K 字数据/程序空间 32 位 ALU/累加器 16 16 位乘法器,乘积为 32 位 用于数据/程序管理的块移动 重复指令以有效利用程序空间 用于直接编解码器接口的串行端口 用于同步多处理器配置的同步输入 用于与慢速片外存储器/外设通信的等待状态 用于控制操作的片上定时器 单 5V 电源 封装:68 引脚 PGA、PLCC 和 CER-QUAD 用于 EPROM 编程的 68 至 28 引脚转换适配器插座 提供商用和军用版本 NMOS 技术: — TMS32020 200 纳秒周期时间 . . . . . . . . CMOS 技术: — TMS320C25 100 纳秒周期时间 . . . . . . . . — TMS320E25 100 纳秒周期时间 . . . . . . . . — TMS320C25-50 80 纳秒周期时间 . . . . .
这些元素意味着 56F8000 系列组件非常适合广泛的工业、消费和汽车应用。56F8000 系列是飞思卡尔嵌入式闪存产品组合的一部分,如图 1-1 所示。随着 56F8000 系列的推出,飞思卡尔为基于闪存的产品提供了全新水平的价格、性能和集成度。56F8000 系列为当前的 8/16 位 MCU 和 56800/E 客户提供了提高性价比和功能的绝佳途径。56F8000 系列的低成本、增强的外设性能和功能使开发人员能够通过新产品的可能性来拓展视野。本白皮书仅展示了使用飞思卡尔全新性价比领先的 56F8000 控制器实现的少数应用。