1. 介绍 TI 和 ADI 可编程 DSP 处理器的架构特点。2. 回顾数字变换技术。3. 给出 DSP 处理器架构的实际例子,以便更好地理解。4. 使用 DSP 处理器的指令集开发编程知识。5. 了解与内存和 I/O 设备的接口技术。第一单元:数字信号处理简介:简介、数字信号处理系统、采样过程、离散时间序列。离散傅里叶变换 (DFT) 和快速傅里叶变换 (FFT)、线性时不变系统、数字滤波器、抽取和插值。DSP 实现中的计算精度:DSP 系统中信号和系数的数字格式、动态范围和精度、DSP 实现中的错误源、A/D 转换错误、DSP 计算错误、D/A 转换错误、补偿滤波器。第二单元:可编程 DSP 设备的架构:基本架构特征、DSP 计算构建块、总线架构和内存、数据寻址能力、地址生成单元、可编程性和程序执行、速度问题、外部接口功能。第三单元:可编程数字信号处理器:商用数字信号处理设备、TMS320C54XX DSP 的数据寻址模式、TMS320C54XX 处理器的数据寻址模式、TMS320C54XX 处理器的内存空间、程序控制、TMS320C54XX 指令和编程、片上外设、TMS320C54XX 处理器的中断、TMS320C54XX 处理器的流水线操作。单元 – IV:Analog Devices 系列 DSP 器件:Analog Devices 系列 DSP 器件 – ALU 和 MAC 框图、移位器指令、ADSP 2100 的基本架构、ADSP-2181 高性能处理器。Blackfin 处理器简介 - Blackfin 处理器、微信号架构简介、硬件处理单元和寄存器文件概述、地址算术单元、控制单元、
传统的电子信息工程数字信号处理技术存在数据冗余、数据利用率低等问题。针对这些问题,本文提出了一种基于分布式云计算的电子信息工程数字信号处理新技术。从常规数字信号的数据采集、数据分析、数据分类、数据挖掘、有效信息存储等环节出发,通过依靠分布式云计算方法和智能梯度跟踪算法实现数字信号的高效处理,采用比例积分微分(PID)控制策略来评价数字信号处理技术中各个环节的智能程度。该方法可实现数字信号处理过程中数据采集和存储的自适应调控,实现多样化分析和智能匹配。通过分布式云计算实现对系统存储模块的快速控制,使数据库提高工作效率,降低系统在数据运算过程中的功耗成本,提高数字信号处理的效率。实验结果表明,基于分布式云计算和智能梯度跟踪算法的数字信号处理系统具有计算效率高、精度高、稳定性好的优点。© 2021 Elsevier B.V. 保留所有权利。
专用集成电路 (ASIC) 信号处理器对于实现现代应用的高性能和低功耗要求必不可少,但较长的开发时间是导致其采用率下降的一个障碍。其开发时间的很大一部分用于架构的设计和验证,其余部分则用于后端 ASIC 流程工作和芯片测试。敏捷硬件原则借鉴了类似的成功软件方法,以前应用于通用处理器,为继续开发片上信号处理系统 (SoC) 提供了一种有前途的解决方案。本文提出了一个数字信号处理 SoC 设计框架,该框架与敏捷设计原则相结合,支持快速原型设计和设计用于信号处理应用的 ASIC。首先,第 2 章探讨和分析了应用程序和现有的 ASIC 解决方案,以收集有用的属性和趋势。据此,第 3 章提出了一个通用信号处理 SoC 的模型。接下来,第 4 章介绍了一种新的 Chisel 生成器设计框架。Chisel 是一种用 Scala 编写的 DSL 硬件构造语言,允许在设计硬件时使用高级和函数式编程。该框架将通用处理器与信号处理加速器结合在一起,并提供了许多用于连接、内存映射和编程的库代码。当与敏捷设计流程相结合时,该框架支持 ASIC 的快速开发。加速器执行流信号处理以减轻 CPU 的高吞吐量计算内核负担。随着所需应用程序的处理单元的产生,处理从 CPU 转移到加速器。低速率处理任务在 CPU 上计算,这意味着流片按时进行并产生能够执行整个应用程序的工作芯片。第 5 章和第 6 章在两个独立的芯片上验证了该方法和提出的敏捷设计流程,涵盖两个应用程序和两个流程节点。 ASIC 谱仪 (Splash2) 的 RTL 由一个人在八周内设计完成,展示了 Chisel 快速构建处理元素生成器的强大功能。然后根据物理设计和时间线约束改进这些生成器并调整参数
委员会的结论是,需要改进信号和交通管理技术,才能在英国打造世界一流的铁路网络。委员会支持加快开发欧洲列车控制系统 (ETCS)、交通管理软件和驾驶员咨询系统的想法,但这应取决于对数字铁路业务案例的仔细考虑、资金的明确性以及对该计划将如何影响现有的改进和更新工作计划的清晰理解。
未经 NEC Electronics Inc. 事先书面同意,不得以任何形式或任何方式复制或复制本文档的任何部分。本文档中的信息如有更改,恕不另行通知。NEC Electronics Inc. 销售的设备受 NEC Electronics Inc. 中出现的保修和专利赔偿条款的保护。仅限销售条款和条件。NEC Electronics Inc. 对此处列出的信息或所述设备不受专利侵权不作任何明示、法定、暗示或描述的保证。NEC Electronics Inc. 不对适销性或适用于任何目的作任何保证。NEC Electronics Inc. 对本文档中可能出现的任何错误不承担任何责任。NEC Electronics Inc. 不承诺更新或保持本文档中包含的信息为最新信息。
TA 输入忽略输入传输确认 — 如果没有外部总线活动,则忽略 TA 输入。TA 输入是数据传输确认 (DTACK) 功能,可以无限延长外部总线周期。通过保持 TA 处于无效状态,可以将任意数量的等待状态(1、2……无穷大)添加到 BCR 插入的等待状态中。在典型操作中,TA 在总线周期开始时处于无效状态,被置位以启用总线周期的完成,并在下一个总线周期之前处于无效状态。当前总线周期在 TA 与内部系统时钟同步置位后完成一个时钟周期。等待状态的数量由 TA 输入或总线控制寄存器 (BCR) 确定,以较长者为准。BCR 可用于设置外部总线周期中的最小等待状态数。
Newnes 爱思唯尔出版社 Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington, MA 01803 首次出版于 2003 年 版权所有 2003, IDC Technologies。保留所有权利 未经版权持有人书面许可,不得以任何材料形式复制本出版物的任何部分(包括以电子方式复印或存储在任何介质中,无论是否临时或偶然用于本出版物的其他用途),除非根据《1988 年版权、外观设计和专利法》的规定或根据版权许可机构有限公司颁发的许可条款,地址为 90 Tottenham Court Road, London, England W1T 4LP。如需获得版权持有人的书面许可,复制本出版物的任何部分,请向出版商提出申请。英国图书馆出版数据编目。英国图书馆有本书的目录记录。ISBN 07506 57987。排版和编辑:印度孟买的 Vivek Mehra。在英国印刷和装订。
dsPIC30F 和 dsPIC33F 器件非常适合需要比基本微控制器更多的功能的电机。无论您需要更多的计算能力还是完整的 DSP 功能,这些器件都能满足您的需求。将数字信号控制应用于无传感器控制应用、精确速度/位置/伺服控制、扭矩管理、变速电机、高 RPM 电机、可变负载应用、降噪或提高能效。无刷直流、交流感应或开关磁阻电机是这些控制器系列的理想选择。有关 Microchip 电机控制功能的更多信息,请访问电机控制设计中心 www.microchip.com/motor。
这些元素意味着 56F8000 系列组件非常适合广泛的工业、消费和汽车应用。56F8000 系列是飞思卡尔嵌入式闪存产品组合的一部分,如图 1-1 所示。随着 56F8000 系列的推出,飞思卡尔为基于闪存的产品提供了全新水平的价格、性能和集成度。56F8000 系列为当前的 8/16 位 MCU 和 56800/E 客户提供了提高性价比和功能的绝佳途径。56F8000 系列的低成本、增强的外设性能和功能使开发人员能够通过新产品的可能性来拓展视野。本白皮书仅展示了使用飞思卡尔全新性价比领先的 56F8000 控制器实现的少数应用。