BIOE 5039 - 机电一体化和嵌入式系统 (3 学分) 本课程侧重于微处理器控制的机电系统的设计和构建。讲座回顾关键电路主题(欧姆定律、RLC 电路、直流和交流信号、二极管和晶体管电路、运算放大器和数字信号),介绍微处理器架构和编程,讨论传感器和执行器组件选择、机器人系统以及复杂多系统设备的设计策略。实验室工作巩固了讲座内容,并提供了机器人和嵌入式系统设计的实践经验。学生必须设计和构建与辅助技术相关的嵌入式系统设备。注意:可能会产生项目费用(最高 50 美元)。与 BIOE 4039 交叉列出。最大小时数:3 学分。评分依据:字母等级
许多系统,包括数字信号处理器,有限脉冲响应(FIR)过滤器,特定于应用程序的集成电路和微处理器,请使用乘数。在当前技术趋势中,对低功率乘数的需求每天逐渐上升。在这项研究中,我们基于携带选择加法器(CSA)的4×4华莱士乘数,该乘法器使用的功率较少,并且比现有乘数具有更好的功率延迟产品。HSPICE工具用于模拟结果。与传统的基于CSA的乘数相比,功耗为1.7 µW,功率延迟产品(PDP)为57.3 fj,结果表明,Wallace Multipleer设计采用了CSA,其CSA具有首先零查找逻辑(FZF)逻辑的CSA,其功率最低1.4 µW和PDP的功率最低。
近几年来,模拟数字转换器 (ADC) 和数字信号处理器(包括专用集成电路)的硬件开发进展迅速。这些进步为使用中频数字化(有时也使用射频数字化)的无线电接收器的开发铺平了道路。这些接收器的应用预计将在蜂窝移动、卫星和个人通信服务 (PCS) 系统等领域迅速增加。本文研究了由于这些设备的硬件限制而对这些接收器施加的限制。列出了一些最先进的 ADC、信号处理器和专用集成电路的示例。讨论了各种量化技术、非线性压缩设备、用于改善动态范围的后数字化算法、采样下变频器和专用集成电路,因为它们有望在开发这些类型的接收器中发挥作用。还介绍了几个在中频和射频采用数字化的无线电接收器的示例。
完整的IBCI系统由神经信息采集设备(传感器),神经信息解析设备(处理器),功能执行设备(效应器)和反馈培训设备(反馈)组成。具体而言,“传感器”是BCI系统的关键组成部分,该系统利用神经间的技术来感知脑神经信号,包括使用微电极来记录由神经元活动产生的微妙电信号。“处理器”过滤器并放大了由“传感器”录制的模拟电信号,将它们转换为数字信号进行预处理,通过数字处理算法提取神经功能信息,并使用接近实时解码的算法将提取的信息特征转换为可理解的信号,从而将神经信息转换为可理解的信号,从而完成神经信息编解码。“ effec-
模块 I:电子学简介 [12 小时] 电子设备及其应用、信号、模拟和数字信号、放大器。线性波形整形电路:RC LPF、积分器、RC HPF、微分器。半导体特性、固体分类、硅能带、本征和非本征半导体、半导体电流、霍尔效应、扩散电流、漂移电流、迁移率和电阻率。模块 II:半导体二极管 [12 小时] pn 结理论、V-I 特性、负载线分析、二极管等效电路、二极管电路分析、过渡电容和扩散电容。二极管电路的应用;整流器、限幅器、钳位器。滤波电路、特殊用途二极管:齐纳二极管、LED、光电二极管、隧道二极管、变容二极管、肖克利二极管。激光基础知识。模块 III:BJT 和 FET [12 小时]
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能至关重要。对功能的需求不断增加,意味着更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触垫间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔以及小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。
LPIA 100% 向后兼容现有的 APN-194、APN-224、APN-232、APN-209 和 APN-171 安装,通过使用简单、可互换的前面板、安装板和模拟 I/O 卡以及重复使用现有天线,消除了 A 套件成本。高可靠性和广泛的 BIT 覆盖范围支持经济高效的“O 到 D”维护概念,将更换和管道备件要求降至最低。设计的通用性在多种配置中重复使用了七个子组件中的五个(数字信号处理器卡、RF 模块、数字 I/O 卡、电源卡和机箱),使用户可以共享更广泛生产基地实现的成本节约。波形和信号处理由软件控制,允许根据各种平台的独特挑战轻松定制性能。该软件可现场重新编程,从而降低新安装和软件维护成本。
模拟:● 模拟信号具有正弦或连续值。当今的模拟系统使用频率调制 (FM)。频率调制产生带有语音信号的连续波。通过将这种简单的系统集成到单个芯片中,这种收音机的成本已大大降低。模拟信号在当今的许多系统中广泛使用,但随着更可靠的数字信号的引入,模拟信号的使用正在减少。数字:● 数字信号用二进制数表示:1 或 0。1 和 0 值可以对应不同的离散电压值。任何不太适合该方案的信号都会被四舍五入。通过使用二进制信号,可以在每个传输的数据包中嵌入纠错信令和控制位。数据包包含一组位。该软件包含一种算法,可以理解语音和背景噪音之间的差异,并反过来消除
数字信号处理(DSP)算法在提高各个域的信号的质量和效率方面起着关键作用,从电信和音频处理到医学成像和雷达系统[1]。这些算法可以使数字信号的操纵,分析和合成以提取有意义的信息,减少噪声并改善整体性能。在本文中,我们深入研究了DSP算法的领域,探讨了它们的意义,应用以及它们提高信号质量和效率的方式[2]。数字信号处理涉及使用数学算法来操纵数字信号以实现特定目标。与处理连续信号的模拟信号处理不同,DSP以从模拟域采样的离散时间信号运行。将这种转换为数字化,可以使用计算技术来精确控制和操纵信号。dsp算法包括量身定制的多种技术,以解决各种信号处理任务[3]。
本文介绍了一种针对真实无线立体声(TWS)耳塞的语音增强解决方案。该解决方案是专门设计的,以支持嘈杂的环境中的对话,并具有主动噪声(ANC)的作用。在这种情况下,语音增强模型的主要挑战是由计算复杂性引起的,该计算复杂性限制了设备的使用和延迟,必须小于3 ms才能进行现场对话。为了解决这些问题,我们评估了几个关键的设计元素,包括网络档案和域,损失功能的设计,修剪方法和特定于硬件的优化。因此,与基线模型相比,我们阐述了语音增强质量的实质性改进,同时降低了计算复杂性和算法延迟。索引术语:低延迟语音增强,修剪和量化,数字信号处理器,耳塞,设备上