1实施各种灰度转换以增强图像。2实施直方图均衡技术。3编写一个程序,以在输入图像上应用卷积过程以进行图像平滑。4实现定向梯度(HOG)的直方图进行特征提取。5编写一个程序,以在输入图像上应用比例不变特征变换。6实施视频中背景减法的框架差异技术。7实施主成分分析以计算特征向量以降低维度。8实施对象检测算法yolo。9实现R-CNN算法进行对象检测。10使用光流技术实施运动估计。11实现对象识别。12实现面部表达识别。
................................................ . ……………………………… …………………………………… .. 50
对数字图像处理方法的兴趣源于两个主要应用领域:改进人类解释的图形信息;以及用于存储,传输和自动机器感知表示的图像数据的处理。计算机数字图像技术是计算机应用程序纪律的非常重要的分支,其应用领域包括测量,计算机辅助设计,物理,三维模拟和其他行业。此外,随着计算机硬件性能的改善,图像处理算法改善了数字图像处理技术的应用。本评论文章重点介绍当前的数字图像处理技术及其在当今兴趣的医疗,森林保护和其他领域中的应用。
深度学习的兴起:卷积神经网络 (CNN) 等深度学习技术越来越多地用于图像分类、对象检测、分割等,这将巩固 Python 作为首选语言的主导地位。基于云的图像处理:随着向云计算的转变,Python 利用基于云的资源处理大规模图像处理工作负载的能力将成为一大优势。边缘计算:Python 适用于资源受限的环境,这使其成为边缘计算场景的关键,在这种场景中,图像处理任务在更靠近数据源的设备上执行。实时应用:Python 的效率和低延迟对于实时图像处理应用(如自动驾驶汽车、医学图像分析和增强现实)至关重要。可解释的人工智能和人机系统:随着对图像处理算法的透明度和可解释性的需求不断增长,Python 的可解释人工智能和人机系统工具将变得非常宝贵。
顾名思义,量子图像处理是一种利用量子信息技术处理图像的方法。它是量子信息科学领域的一项相对较新的进步,可以确保高效地管理经典图像处理中使用的简单操作。此过程的第一步也是最重要的一步是将经典图像编码为量子图像,这可以通过多种不同的方法完成。本文详细探讨了 FRQI(量子图像的灵活表示),它对图像进行编码以便在量子计算机上表示。FRQI 状态包含有关颜色及其在图像中的各自位置的信息。一旦达到 FRQI 状态,就会对其应用所需的量子图像处理算法,这对于执行整个过程的特定目的是必要的。FRQI 不仅用于图像表示,还用于量子图像处理的各种其他相关任务。在准备好 FRQI 状态后,在 Qiskit 上进行其电路实现和模拟。
《近期研究评论》杂志,2023 年 6 月,第 2 卷,第 1 期,第 112-121 页 DOI:https://doi.org/10.36548/rrrj.2023.1.09 112 © 2023 Inventive Research Organization。这是一篇根据知识共享署名-非商业性国际 (CC BY-NC 4.0) 许可协议开放获取的文章
高斯核由使用先前定义确定的权重组成。但是,还有另一种方法可以通过使用卷积来生成这些权重。实际上,如果我们使用标准向量 [1, 1] 并第一次对其自身应用卷积,然后对结果应用卷积,我们将得到牛顿二项式定理的系数。根据中心极限定理,随着迭代次数的增加,该定理可以很好地近似高斯分布。下图对此进行了说明。用于生成此结果的代码将在实施部分中介绍。结果已归一化,我们可以清楚地看到,即使经过几次迭代,它也会收敛到高斯分布。
医学成像中的自动缺陷检测已成为多种医学诊断应用中的新兴领域。MRI 中的肿瘤自动检测非常重要,因为它可以提供有关异常组织的信息,而这些信息对于计划治疗必不可少。磁共振脑图像中的缺陷检测传统方法是人工检查。由于数据量巨大,这种方法不切实际。因此,可信的自动分类方案对于降低人类死亡率至关重要。因此,开发了自动肿瘤检测方法,因为它可以节省放射科医生的时间并获得测试的准确性。由于肿瘤的复杂性和多变性,MRI 脑肿瘤检测是一项复杂的任务。在这个项目中,我们提出了机器学习算法来克服传统分类器的缺点,即使用机器学习算法在脑部 MRI 中检测肿瘤。机器学习和图像分类器可用于通过 MRI 有效地检测脑中的癌细胞。