退化现象。使用去噪技术去除图像中的噪声和使用去模糊技术去除图像中的模糊都属于图像恢复。 • 彩色图像处理:这基本上有两种类型——全彩色和伪彩色处理。在前一种情况下,图像是通过全彩色传感器(如彩色扫描仪)捕获的。全彩色处理进一步分为两类:在第一类中,每个组件被单独处理,然后形成复合处理后的彩色图像;在第二类中,我们直接操作彩色像素。伪彩色或假彩色处理涉及根据规定的标准将颜色分配给特定的灰度值或值范围。强度切片和颜色编码是伪彩色处理的技术。颜色用于图像处理是因为人类能够区分不同色调和强度与不同灰度。此外,图像中的颜色使得从场景中提取和识别物体变得容易。 • 图像压缩:这意味着通过消除重复数据来减少表达数字图像所需的信息量。压缩是为了减少图像的存储要求或减少传输期间的带宽要求。压缩是在存储或传输图像之前完成的。压缩有两种类型——有损和无损。在无损压缩中,图像的压缩方式不会丢失任何信息。但是在有损压缩中,为了实现高水平的压缩,可以接受一定量的信息丢失。前者适用于图像存档,例如存储医疗或法律记录,而后者适用于视频会议、传真传输和广播电视。无损压缩技术包括可变长度编码、算术编码、霍夫曼编码、位平面编码、LZW 编码、游程编码和无损预测编码。有损压缩技术包括有损预测编码、小波编码和变换编码。• 形态图像处理:它是一种绘制图像中可用于表示和描述图像形态、大小和形状的部分的技术。常见的形态学算子有膨胀、腐蚀、闭运算和开运算。形态学图像处理的主要应用包括边界提取、区域填充、凸包、骨架、细化、连通分量提取、加厚和剪枝。• 图像分割:这是使用自动和半自动方法从图像中提取所需区域的过程。分割方法大致分为边缘检测方法、基于区域的方法(包括阈值和区域增长方法)、分类方法(包括 K 近邻、最大似然法)、聚类方法(K 均值、模糊 C 均值、期望最大化方法)和分水岭分割 [3]。• 表示和描述:分割过程的结果是像素形式的原始数据,需要进一步压缩才能表示和描述,以便进行额外的计算机处理。区域可以用其外部特征(如边界)来表示
为了解决普通相机收集引起的QR码识别问题,本文提出了基于图像处理的识别算法。整个过程,包括图像二进制,图像倾斜校正,图像方向,图像几何校正和图像归一化允许在不同的照明条件下收集的图像。实验表明,改进的方法可以提高二维代码和准确性的识别速度。qr,即“快速响应”代码是一个2D矩阵代码,它是通过考虑两个点(即与1D条形码相比,它必须存储大量数据,并且必须使用任何手持设备(如手机)在高速上解码。QR码提供高数据存储容量,快速扫描,全向可读性以及许多其他优点,包括错误校正(因此,也可以成功读取损坏的代码)和不同类型的版本。QR码符号的不同品种,例如徽标QR码,加密的QR代码,QR码,以便用户可以根据需要选择。现在,如今,在与营销,安全,学术界相关的不同应用程序流中应用了QR码。并以非常高的速度获得受欢迎程度。每天越来越多的人意识到这项技术并相应地使用它。QR码的普及随智能手机用户的增长而迅速增长,因此QR码在全球范围内迅速达到高水平的接受度。
卫星图像处理是管理我们星球资源的强大工具之一。最近,它在应对全球挑战(例如资源管理,可持续性,气候变化,灾难管理和响应,作物监测等)等全球挑战方面非常重要。图像处理中AI技术的演变已成为处理卫星图像的动力。通过提供高级工具进行分析。FDP旨在深入了解AI在卫星图像处理及其应用中的范围和影响。
Adobe的Firefly AI直接在Photoshop和Lightroom内部工作。这使得对于那些熟悉这些应用程序的人都可以方便地使用。它易于使用,可以改善颗粒状的照片,使它们再次可用。在此示例中,我们选择将图像大小加倍。您可以看到,这将图像伸出并增加失真。现在,我们拥有想要它的大小的图像,我们需要使用Photoshop的AI神经过滤器之一来纠正这些扭曲,Photoshop还配备了其他经过特殊训练的神经过滤器,这些神经过滤器经过专门训练以增强特定增强需求的图像。谷仓本身的质量和细节最有所提高,天空也大大从文物中删除。
要使学生通过课程,必须获得至少30%的考试分数。学生将参加最终考试。期末考试将包括评估学生能力的问题1)确定不同计算机视觉和图像处理技术的重要特征; 2)对不同的计算机视觉和图像处理方法进行批判性评估; 3)评估学生确定不同计算机视觉和图像处理技术的重要特征的能力。
摘要 - 这项研究阐明了农业行业的发展,并强调了生产领域的进步。作为关键质量参数的果实大小和形状的显着识别强调了研究的重要性。应对这一挑战,该研究介绍了旨在简化农业环境中苹果的专业图像处理技术,特别强调了准确的苹果宽度估计。设计了专用的机器,其中包含一个围栏,该机箱装有一个具有成本效益的摄像头,以及用于对Malus fomeflya bockh borkh and Apples进行分类的链条输送机。通过实施图像预处理,细分和测量技术来成功实现这些目标,以促进分类。所提出的方法将苹果分为三个不同的类别,在第1类中获得了94%的令人印象深刻的精度,在第2类中达到92%,在第3类中达到86%。这代表了苹果分类和尺寸估计的有效且经济的解决方案,有望大大提高分类过程并突破农业部门的自动化界限。关键字 - 农业,开源计算机视觉(OPENCV),苹果,排序,宽度估计
目前,Hansa Luftbild 拥有 3 架飞机、数字大画幅相机和 LiDAR 系统。近年来,航空传感器系统变得更加多样化,因此 Hansa Luftbild 现在提供(部分与合作伙伴合作)以下服务:
Kush Vora Ninad Mehendale *计算机工程系电子系K.J Somaiya工程学院K.J.Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。 MRI是检测肿瘤的最有效诊断工具。 但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。 深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。 我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。 该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。 提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。 使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。 关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。 封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。 随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。MRI是检测肿瘤的最有效诊断工具。但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。脑肿瘤分为两种不同类型。恶性(癌)和良性(非癌症)。这些肿瘤进一步分为原发性和继发性肿瘤(转移性肿瘤)。原发性脑肿瘤起源于大脑内部,但是当癌细胞从其他器官传播到大脑(肺部到大脑)时,转移性脑肿瘤就会发展。绝大多数原发性脑肿瘤都不癌。死亡率的第十个主要原因是脑肿瘤。在2020年,全球估计,有251,329人死于原发性恶性脑和中枢神经系统(CNS)肿瘤。今天在美国,估计有70万人受到原发性脑肿瘤的影响。这些肿瘤可能是致命的,并对生活质量产生重大影响。女性比男性更有可能获得任何类型的大脑或脊髓肿瘤,而男性则更有可能患上恶性肿瘤。这主要是因为某些类型的肿瘤在一种性别或另一种性别中更为普遍(例如,脑膜瘤在女性中更为常见)。患有恶性大脑或中枢神经系统肿瘤患者的5年生存率
摘要。最近,人们使用深度学习技术分析了脑肿瘤数据。脑肿瘤的分割和分类以及区分肿瘤细胞和非肿瘤细胞非常有趣,因为要区分有肿瘤和无肿瘤的脑细胞,并区分肿瘤细胞以找到它们的类别标签。为此,分割是一种对脑图像进行分类的合适方法,研究人员通常使用它。为了实现准确的分类,必须从提取相关特征开始。在这项工作中,利用概率模糊 C 均值 (FCM) 算法进一步细化分割过程。这种分析可以区分出显示的脑部磁共振成像 (MRI) 扫描的感兴趣区域,这为降低 MRI 脑图像的维数提供了一个框架。在分割后,将局部方向模式 (LDP) 应用于片段,以提取已通过分割方法识别的重要特征区域。在深度信念网络旁边,提供了特征,这些特征决定了图像是正常还是异常,以及 MRI 是否可用于检测或排除肿瘤的存在。在提出的方法和脑肿瘤分割数据库的帮助下进行了实验;已评估准确率,最高百分比为 95.78%。© 2023 SPIE 和 IS&T [DOI:10.1117/1.JEI.32.6.062502]