印度尼西亚政府已经开始改革数字广播,通过同步广播系统促进从模拟广播到数字广播的过渡。全面实施这些技术变革有可能产生最佳的数字广播生态系统。这种同步广播系统的显着特点是它能够同时传输模拟和数字频率。尽管它具有相当大的实际意义,但是对于为什么必须实施模拟和数字广播同步广播系统以跟上数字时代广播技术的发展步伐,人们缺乏系统的知识。这项研究通过探索多平台同步广播模型的生态系统因素,为广播的未来做出了贡献。该分析基于对广播行业互联网领域内同步广播系统(模拟和数字)的定性研究。研究确定了几个因素:第一,地面模拟广播;第二,地面数字广播;第三,互联网广播和人力资源;第四,模拟和数字同步广播系统;第四,互联网多元社交媒体平台。
• 可自由配置的单声道、立体声和 5.1 通道,具有灵活的处理顺序 • 可扩展的控制界面,最多可配备 128 个推子条和主控部分 • 每个托架中都可以安装主通道控件,从而实现硬件冗余和多个访问点 • 通过触摸屏和图形离线配置对每个节目进行简单的设置 • 通道分层排列,活动层的控制位于触摸屏下方 • 重新排列通道或“克隆”通道到所有层,即使在直播时也是如此 • 独特的图形前面板管理提供对处理的冗余访问 • 舞台接口箱带有远程控制的麦克风输入、线路和分离输出以及冗余光纤连接上的 GPI 选项
Andreas Vielhaber,Synopsys 公司,意大利米兰 摘要 当今的片上系统 (SoC) 设计非常复杂,要求新的 SoC 设计项目采用更快、更简单的流程和方法。为了以更快、更低成本将更多 SoC 推向市场,意法半导体与 Synopsys® 专业服务部门联手,为数字音频系统平台设计了一种新的流程和方法。本文介绍了 SYNOPSYS® coreAssembler 如何通过自动化配置和互连步骤、提供实现 AMBA 平台的自动化路径以及使用 VIP 改进验证来简化使用 AMBA DesignWare® 组装 AMBA 系统的过程。该流程已用于设计和验证由意法半导体数字广播无线电部门 (汽车产品组) 开发的数字无线电系统控制器和音频解码器架构。
尽管该系统在白天工作正常,但问题也随之显现。首先,在系统初始实验室测试中使用的信道模拟器是基于最早接收到的路径最强这一假设建模的。实际上,据观察,在距离发射机 40 公里处,在第一个天波信号之前接收到了一个微弱的地波信号。这一观察结果使得信道模拟器能够进行调整,并且接收器算法能够为后续测试进行更改。在晚上还观察到了另一个问题,此时电离层 D 层的吸收减少,导致信号反射增多,从而超出了保护间隔可以应对的最大延迟扩展(稳健模式 B 为 5 毫秒)。同时,模式 B 的多普勒扩展最大值也被超出。为了克服这些问题,需要提高原型 DRM 系统模式对多普勒和延迟扩展的稳健性。因此,2001 年,两种额外的 OFDM 模式(称为模式 C 和 D)被引入到 DRM 系统规范中。
国际总部 Begbroke, Oxford, England OX5 1RU 电话 +44 (0)1865 842300 邮箱 sales@solid-state-logic.com 法国 1 rue Michael Faraday, 78180 Montigny le Bretonneux 电话 +33 1 34 60 46 66 邮箱 frsales@solid-state-logic.com 意大利 Via Timavo 34, 20124 Milano, Italy 电话 +39 0392 328094 邮箱 itasales@solid-state-logic.com 纽约 320 West 46th Street, New York, NY 10036 电话 +1 212 315 1111 邮箱 nysales@solid-state-logic.com 洛杉矶 6255 Sunset Boulevard, Los Angeles, California 90028 电话 +1 323 463 4444 邮箱lasales@solid-state-logic.com 加拿大 34 Knox Crescent, Brooklin, Ontario, Canada L1M 1C8 电话 +1 905 655 7792 邮箱 cansales@solid-state-logic.com 日本 3-55-14 Sendagaya, Shibuya-Ku, Tokyo 151-0051 电话 +81 (0)3 5474 1144 邮箱 jpsales@solid-state-logic.com 新加坡 150 South Bridge Road, #02-22 Fook Hai Building, 058727 电话 +65 438 2272