今天,在拉斯维加斯举行的全国商务航空大会和展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业内最先进、用途最广泛的单引擎涡桨飞机 – PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备以及经过完全重新设计的带有更大窗户的机舱,使第三代 PC-12 机身成为迄今为止最先进的单引擎涡桨飞机。新款 PC-12 NGX 汲取了全球 PC-12 机队由 1,700 多架飞机组成的经验和超过 700 万小时的飞行时间,再加上皮拉图斯公司业界领先的支持,为涡桨飞机市场带来了最新技术。经过验证的数字控制发动机技术单引擎涡桨飞机的运行需要经过验证的动力装置:新款 PC-12 NGX 的核心是普惠加拿大公司的 PT6E-67XP 涡桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客提供极大的舒适度。新的涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料操作。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的高级驾驶舱环境 (ACE™) 系统灵感源自 PC-24,可提供增强的航空电子设备。皮拉图斯在该细分市场中的另一个首创是结合
今天,在拉斯维加斯举行的全国商务航空大会和展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业内最先进、用途最广泛的单引擎涡桨飞机 – PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备以及经过完全重新设计的带有更大窗户的机舱,使第三代 PC-12 机身成为迄今为止最先进的单引擎涡桨飞机。新款 PC-12 NGX 汲取了全球 PC-12 机队由 1,700 多架飞机组成的经验和超过 700 万小时的飞行时间,再加上皮拉图斯公司业界领先的支持,为涡桨飞机市场带来了最新技术。经过验证的数字控制发动机技术单引擎涡桨飞机的运行需要经过验证的动力装置:新款 PC-12 NGX 的核心是普惠加拿大公司的 PT6E-67XP 涡桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客提供极大的舒适度。新的涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料操作。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的高级驾驶舱环境 (ACE™) 系统灵感源自 PC-24,可提供增强的航空电子设备。皮拉图斯在该细分市场中的另一个首创是结合
今天,在拉斯维加斯举行的全国商务航空大会和展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业内最先进、用途最广泛的单引擎涡桨飞机 – PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备以及经过完全重新设计的带有更大窗户的机舱,使第三代 PC-12 机身成为迄今为止最先进的单引擎涡桨飞机。新款 PC-12 NGX 汲取了全球 PC-12 机队由 1,700 多架飞机组成的经验和超过 700 万小时的飞行时间,再加上皮拉图斯公司业界领先的支持,为涡桨飞机市场带来了最新技术。经过验证的数字控制发动机技术单引擎涡桨飞机的运行需要经过验证的动力装置:新款 PC-12 NGX 的核心是普惠加拿大公司的 PT6E-67XP 涡桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客提供极大的舒适度。新的涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料操作。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的高级驾驶舱环境 (ACE™) 系统灵感源自 PC-24,可提供增强的航空电子设备。皮拉图斯在该细分市场中的另一个首创是结合
Le Maitre MVS 烟雾机是高规格烟雾机系列中的最新产品,因此可以满足大多数需要更高要求的应用。它利用原始专利技术,通过易于更换的“转换”管产生烟雾,同时受益于其更大合作伙伴 Stadium 烟雾机在开发过程中取得的进步。更大直径的转换管、更高功率的气泵、相位延迟高侧电流控制、更高温度的清洁方案都有助于提高输出和可靠性。MVS 具有集成的四通道电流协议 DMX、数字编程、数字显示器和独特的气流系统。现在可以控制音量输出,也可以控制烟雾的投射距离。同样,对两个内置大功率风扇的独特数字控制不仅可以控制投射功率,还可以控制投射相对于机器位置的角度。烟雾输出角度可通过电子方式调整至 90 度。烟雾绝不会与导轨或结构接触,否则通常会导致冷凝水和残留物的积聚。机器的控制中使用了两个通信处理器设备,可以高效、专用地控制其连接的设备。控制面板处理器包括非易失性存储器,允许将所有设置保留在该存储器中,并在启动时调用。这对于需要“开机即用”模式的俱乐部或剧院设置来说是理想的选择。最新的高温转换管清洁技术从首次开启开始仅需两分钟的操作,在机器运行期间不再需要。MVS 本身的设计考虑了用户操作和安装,因此可以在多个位置使用。底座支撑板可以调整,以在多个角度物理支撑机器,而单独的瓶架可以连接或与机器分离使用。Le Maitre 认为,这台机器是目前世界上最有效和用途最广泛的烟雾机之一,并得到了我们一贯高水平的技术和销售沟通网络的支持。有关 MVS 的所有详细信息可在我们的网站 www.lemaitreltd.com 上找到
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设平均完全从故障中恢复需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设从故障中完全恢复平均需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
德里国家理工学院电气工程系(EE)成立于2010年,涉及人力与发展部(MHRD)的年龄。印度。 目前正在提供一个本科生(B. Tech)课程和一门研究生(M. Tech)课程。 该部门还在相关领域提供博士学位课程。 该部门配备了最先进的设施,可以在各个层面上进行研究工作。 该部门的研究重点是电力系统可靠性,电力电子,可再生能源系统,电力系统,控制/时间延迟系统,模式识别,图像处理等。 该部门还积极参与多学科研究活动。 UG计划受到严格和跨度的包含,以准备一名实践工程师一生的创意工作和持续的技术学习。 该部门为学生提供了健康和竞争的环境,从而在Gate,Cat,Gre,Toefel,Psus等方面取得了几项非凡的成就。印度。目前正在提供一个本科生(B.Tech)课程和一门研究生(M. Tech)课程。该部门还在相关领域提供博士学位课程。该部门配备了最先进的设施,可以在各个层面上进行研究工作。该部门的研究重点是电力系统可靠性,电力电子,可再生能源系统,电力系统,控制/时间延迟系统,模式识别,图像处理等。该部门还积极参与多学科研究活动。UG计划受到严格和跨度的包含,以准备一名实践工程师一生的创意工作和持续的技术学习。该部门为学生提供了健康和竞争的环境,从而在Gate,Cat,Gre,Toefel,Psus等方面取得了几项非凡的成就。该部门拥有实验室,配备了最新的设备和软件平台,以授予最先进的技术知识。该部门旨在设置新实验室,例如绿色能源技术,数字控制和FPGA设计,生物识别等。该部门与印度和国外的研究所和研究机构进行了积极的合作。EE部融合了年轻和经验丰富的动态教职员工,并致力于在该领域提供优质的教育和研究。该系的教职员工拥有出色的学术和研究证书,并发表了许多同行评审的期刊文章/论文,书籍,书籍章节等。 div>在多元化的领域中,在高级研究中具有足够的经验。该部门希望实现工业化和自力更生的国家目标。因此,它希望能够培养具有强大学术和实践背景的毕业生,以便他们在毕业后立即适应该行业。
(1)通信,信号处理和网络(CSPN)(4)智能系统(IS)EE 115-必需*通信(4)EE 144-必需*机器人的简介(4)EE 141-必需*数字信号处理*数字信号处理* 117电磁学II(4)EE 106编程实用机器人(4)EE 118射频电路设计(4)EE 115通信介绍(4)EE 146计算机视觉(4)EE 128 EE 128嵌入的感应和驱动。sys。sys。(4)EE 162纳米电子学入门(4)EE/CS 168-必需* VLSI设计简介(4)EE/CS 168 VLSI设计简介(4)EE 100B电子电路II(4)EE 117 EE 117 EE 117 EE EE 117电子电磁频率II(4)电气频率(6)频率EE(4)频率EE EE(4)EE EE(4)EE(4)EE EE(4)EE EE EE(4)EE EE(4) Required* Power Electronics (4) EE 135 Analog Integrated Circuit Layout and Design (4) EE 155 - Lead Course* Power System Analysis (4) EE 141 Digital Signal Procesing (4) EE 100B Electronic Circuits II (4) EE 147 GPU Computing and Programming (4) EE 117 Electromagnetics II (4) EE 165 Design for Reliability of Integrated Circuits and Sys.(4)EE 128嵌入的感应和致动。sys。(4)CS 161计算机系统的设计和体系结构(4)EE 153电动驱动器(4)(4) EE 150 Digital Communications (4) EE 141 Digital Signal Procesing (4) EE 152 Image Processing (4) EE/ME 145 Robotic Planning & Kinematics (4) ENGR 160 Intro to Engineering Optimization Techniques (4) EE 147 GPU Computing and Programming (4) EE 150 Digital Communications (4) EE 151 Introduction to Digital Control (4) (2) Control and Robotics (CR)EE 152图像处理(4)EE 105-必需*动态系统的建模和模拟工程学优化技术(4)EE 144-必需*机器人介绍(4)EE 106编程实用机器人(4)(4)(5)Nanotechnology,先进的材料,和设备EE EE EE EE EE EE EE(4)半导体设备处理(4)EE/ME 145机器人计划和运动学(4)EE 137-必需*半导体光电设备的介绍(4)EE 146 EE 146计算机视觉(4)EE 100B电子电路II(4)EE II(4)EE 151数字控制(4)EE 117 Electermage Electii ii(4)EE EE 117 EELOMAGETIC EE EE(4)EE EE EE EE(4)EE EE(4)EE(4)EE(4)EE(4)EE(4)EE EE(4)EE EE(4)电路设计(4)ENGR 160工程优化技术的简介(4)EE 135模拟集成电路布局和设计(4)EE 138材料的电子性能(4)(3)嵌入式系统和VLSI EE 139磁性材料(4)EE 128-所需的*传感和嵌入的操作。
UNIT – I INTRODUCTION 9 Introduction to CAD, CAM, CAD/CAM and CIM - Evolution of CIM – CIM wheel and cycle – Production concepts and mathematical models – Simple problems in production models – CIM hardware and software – Major elements of CIM system – Three step process for implementation of CIM – Computers in CIM – Computer networks for manufacturing – The future automated factory – Management of CIM – safety aspects of CIM– advances in CIM.单元 - II自动化制造系统9自动生产线 - 系统配置,工作零件转移机制 - 自动组装系统的基本原理 - 系统配置,在工作站的部分交付 - 自动装配设计 - 自动装配设计 - 概述材料处理设备的概述 - 材料处理系统中的考虑 - 材料处理系统中的考虑 - 10个材料处理原理。输送机系统 - 输送机的类型 - 操作和功能。自动导向车辆系统 - 类型和应用 - 车辆指导技术 - 车辆管理和安全。存储系统性能 - 存储位置策略 - 常规存储方法和设备 - 自动化/检索系统以及自动制造系统中的旋转木马存储系统僵局 - 石油模型 - 避免使用的无锁 - 智能制造 - 工业4.0 - 数字制造 - 虚拟制造 - 虚拟制造。单位 - III组技术和FMS 9零件家庭 - 视觉 - 零件分类和编码 - 生产流量分析 - 按等级顺序集群方法对零件和机器进行分组 - GT的好处 - 案例研究。单元 - IV过程计划9过程规划 - 过程计划中的活动,所需的信息。FMS – Components – workstations – FMS layout configurations – Computer control systems – FMS planning and implementation issues – Architecture of FMS – flow chart showing various operations in FMS – Machine cell design – Composite part concept, Holier method, Key machine concept – Quantitative analysis of FMS – Bottleneck model – Simple and complicated problems – Extended Bottleneck model - sizing the FMS ─ FMS applications, Benefits.从设计到过程规划 - 制造过程的分类 - 主要制造过程的选择 - 根据前部的操作测序 - 各种例子 - 形成前置矩阵的形成 - 案例研究。典型的过程表 - 手动过程计划中的案例研究。计算机辅助过程计划 - 过程计划模块和数据库 - 变体过程计划 - VPP中的两个阶段 - 生成过程计划 - 流程图显示生成PP中的各种活动 - 半生成过程计划 - CAPP和手动PP的比较。单位 - V过程控制和数据分析9过程模型公式简介 - 线性反馈控制系统 - 最佳控制 - 自适应控制 - 序列控制和PLC和SCADA。计算机过程控制 - 计算机过程接口 - 接口硬件 - 计算机过程监视 - 直接数字控制和监督计算机控制 - 自动识别方法概述 - 条形码技术 - 自动数据捕获技术。-质量管理(SPC)和自动检查。
新兴的宽带隙 (WBG) 半导体有望推动全球产业发展,就如同 50 多年前硅 (Si) 芯片的发明推动了现代计算机时代的到来一样。基于 SiC 和 GaN 的器件正开始变得更加商业化。与同类的基于 Si 的元件相比,这些 WBG 器件更小、更快、更高效,在更严苛的操作条件下也能提供更高的可靠性。此外,在此框架下,一种新型微电子级半导体材料被创造出来,其带隙甚至比之前建立的宽带隙半导体(如 GaN 和 SiC)还要大,因此被称为“超宽带隙”材料。这些材料包括 AlGaN、AlN、金刚石和 BN 氧化物基材料,它们在理论上具有更优越的性能,包括更高的临界击穿场、更高的工作温度和潜在的更高辐射耐受性。这些特性反过来又使得革命性的新器件可用于极端环境成为可能,例如高效功率晶体管(因为巴利加品质因数有所提高)、超高压脉冲功率开关、高效 UV-LED、激光二极管和 RF 电子设备。本期特刊发表了 20 篇论文,重点关注基于宽带隙的器件:设计、制造和应用。三篇论文 [1-3] 涉及未来 5G 应用和其他高速高功率应用的 RF 功率电子设备。其中九篇论文 [4-12] 探讨了宽带隙高功率器件的各种设计。其余论文涵盖了基于宽带隙的各种应用,如用于提高 GaN 基光子发射器光子提取效率的 ZnO 纳米棒 [13]、InGaZnO 薄膜晶体管 [14]、宽带隙 WO3 薄膜 [15]、银纳米环 [16、17] 和 InGaN 激光二极管 [18-20]。特别是在 RF GaN 器件方面,Kuchta 等人 [1] 提出了一种基于 GaN 的功率放大器设计,该设计降低了透射率畸变。Lee 等人 [2] 展示了一种用于 2.5 至 6 GHz 干扰系统的紧凑型 20 W GaN 内部匹配功率放大器,它使用高介电常数基板、单层电容器和分流/串联电阻器实现低 Q 匹配和低频稳定。 Lin 等人 [3] 通过集成厚铜金属化层实现了 Ka 波段 8.2 W/mm 的高输出功率密度。关于 GaN 功率器件,Wu 等人 [4] 研究了一种双 AlGaN 势垒设计以实现增强模式特性。Ma 等人 [5] 介绍了一种使用 GaN 的数字控制 2 kVA 三相分流 APF 系统。Tajalli 等人 [6] 通过进行缓冲分解研究了 GaN-on-Si 外延结构中垂直漏电和击穿的起源。可以确定每个缓冲层与垂直漏电和击穿电压相关的贡献。Sun 等人 [7] 研究了 GaN-on-Si 外延结构中垂直漏电和击穿电压的分布。[7] 提出了一种利用 TCAD 实现常关型 GaN HEMT 的新方法。该概念基于将栅极沟道方向从长水平方向转置为短垂直方向。Mao 等 [8] 在 IGBT 的集电极侧引入了一部分 p-polySi/p-SiC 异质结,以在不牺牲器件其他特性的情况下降低关断损耗。Kim 等 [9] 实现了 SiC 微加热器芯片作为下一代功率模块的新型热评估设备,并评估了其耐热性能。