机器学习是人工智能(AI)的子集,它为系统提供了自动从经验中学习和改进的能力而无需明确编程。换句话说,这是一个数据分析的过程,可以使分析模型构建自动化。机器学习涉及可以根据数据学习并做出决策或预测的算法的创建和使用……
1. 亚马逊网络服务新加坡 (AWS 新加坡) AWS 新加坡在数据中心运营中表现出对节水和可持续性的非凡承诺,为其行业内外的水资源管理树立了鼓舞人心的标准。这是由 AWS 到 2030 年实现水资源节约的目标推动的,即向社区返还的水量要超过其直接运营所用的量。他们的努力为他们赢得了当之无愧的 SWMA 2024。 运营中的用水效率 自 2010 年启动 AWS 亚太地区 (新加坡) 区域以来,AWS 新加坡已为其数据中心实施了节水冷却塔设计,以减少用水量。他们还一直在升级运营能力以优化用水,使 AWS 新加坡跻身数据中心领域表现最好的 10% 之列。最近,AWS 新加坡与当地一家初创公司合作,投资并共同开发废水回收技术,使他们能够在现场处理和回收水,从而实现更大的节水效果。
摘要:联合学习(FL)是一种允许多个参与者协作训练深神经网络(DNN)的技术,而无需集中数据。除其他优点外,它具有保护隐私性的财产,使其对在敏感环境(例如医疗保健或军方)的应用中具有吸引力。尽管没有明确交换数据,但培训程序需要共享有关参与者模型的信息。这使各个模型容易受到恶意演员的盗窃或未经授权的分配的影响。为了解决机器学习(ML)的所有权保护问题,在过去的五年中已经开发了DNN水印方法。大多数现有的作品都以集中式的方式着重于水印,但仅针对FL及其独特的限制设计了一些方法。在本文中,我们概述了联合学习水印的最新进步,阐明了这一领域中出现的新挑战和机遇。
生成的AI(Genai)技术,例如语言模型(LMS)和扩散模型,具有令人印象深刻的功能。这些功能包括文本学习,代码完成,文本到图像生成以及文档和代码聊天。然而,Genai技术也用于邪恶目的(例如,产生伪造的推文,产生攻击和有害散文)。To protect against such use cases, a large body of work has focused on detecting AI-generated content (Lavergne et al., 2008; Beresneva, 2016; Gehrmann et al., 2019; Zellers et al., 2019; Mitchell et al., 2023; GPTZero, 2023; Hendrik Kirchner et al., 2023).问题是:给定内容C,C是由特定的Genai工具生成的,例如GPT-4(OpenAI,2023),Gemini(Google DeepMind,2024)或稳定的扩散(Rombach等,2022)?非正式地,我们想要“ Genai Turing测试”。目前,试图检测任意AI生成的文本的主要方法是训练另一个AI模型以执行检测(Zellers等,2019; Mitchell等,2023; Gptzero,2023; Hendrik Kirchner等人,2023年,2023年)。此方法提出了一个关键的假设:AI生成的文本具有可通过AI识别的嵌入功能。这个假设的关键问题是,生成模型是明确设计的,以产生很难与自然内容(由人类或自然产生的)区分的现实内容。结果,随着生成模型的改善,任何“黑盒”检测方案都将遭受高误报和/或假阴性率。这些水印技术改变了生成过程,将“信号”嵌入生成的内容中。可用的探测器,例如Gptzero(Gptzero,2023)无法保证正确性 - 例如,作者直接指出,不应使用其工具引起的检测来谴责学生。为了避免这个基本问题,最近的一项工作(Aaronson,2023; Kirchenbauer等,2023; Christ等,2024; Kuditipudi等,2024)采取了另一种方法来检测AI含量。检测过程衡量信号:如果信号足够强,则可能是水标水标的。特别是Christ等人的加密方法。(2024)实现正式的完整概念(将检测到任何水印的文本),健全性(一个人不知道秘密而不能在文本上加水印)和失真(水印不会改变输出分布)。最后,这些水印
一个非拟合组织计划开放分类器F,但希望通过将水印直接嵌入模型中来检测其使用。爱丽丝的任务是创建此水印。鲍勃的目的是使F在对手方面稳健,即确保很难找到看起来不奇怪但会导致F犯错误的查询。两个面临挑战:爱丽丝努力创建无法消除的水印,而鲍勃的防御措施变得越来越复杂。他们发现自己的项目已连接。爱丽丝的想法是在F中种植一个后门[1,2],使她能够用隐藏的扳机来制作查询,该扳机激活后门,导致F错误分类,从而检测到F的使用。鲍勃的方法涉及平滑F以增强鲁棒性,这无意中消除了此类后门[2]。他们意识到自己的挑战是同一枚硬币的两个方面:一项任务的不可能可以保证另一个任务的成功。
摘要 - 如今,信息和通信技术的进步以及智能手机等电子设备的易于访问,已经实现了敏捷,高效的存储,版本以及数字多媒体文件的分布。但是,缺乏法规导致了与知识产权认证和版权保护相关的几个问题。此外,在非法打印剥削的情况下,问题变得复杂,涉及打印和扫描过程。为解决这些问题,已经提出了几种与加密算法结合使用的数字水印。在本文中,定义了一种强大的水印策略,该策略由墨西哥文化遗产的数字化摄影图像的管理和检测组成。所提出的策略基于两种类型的数字水印的组合,这是一种基于空间域的可见型膜类型,而另一种基于频域的不可见类型,以及粒子群的优化。实验结果表明,在打印扫描过程或数字动物攻击以及常见的图像几何和图像处理攻击(例如JPEG压缩)中所面临的算法的高性能。此外,通过PSNR评估水印的不可识别性,并将其与其他先前提出的算法进行比较。关键字 - 数字水印,图像处理,信息安全,身份验证,版权保护,文化遗产
摘要。物联网(IoT)几乎将互联网和智能设备集成到家庭自动化,电子保健系统,车辆网络,工业控制和军事应用等域。在这些扇区中,从多个来源收集的感官数据,并通过多个节点进行管理,用于决策过程。确保数据完整性并跟踪数据出处是在如此高度动态的环境下的核心要求,因为数据出处是确保数据可信度的重要工具。由于物联网网络工作中的计算和能源有限,处理此类要求是具有挑战性的。这需要解决一些挑战,例如处理开销,安全出处,带宽消耗和存储效率。在本文中,我们提出了锆石,这是一种新型的零水印方法,以在物联网网络中建立端到端数据可信度。在锆石中,出处信息存储在通过水印的防篡改集中式网络数据库中,在传输前在源节点生成的水印。我们提供了广泛的安全性分析,显示了我们计划针对被动和主动攻击的弹性。我们还将我们的计划与基于绩效指标(例如计算时间,能源利用率和成本分析)的现有作品进行了比较。结果表明,与先前的艺术相比,锆石对几种攻击,轻量级,储存效果和能量利用和带宽消耗效果更好。
印章说明: X :第一个字母代表年份, A : 2014 年, B : 2015 年, C : 2016 年, D : 2017 年 ...... 按顺序依此类推 X :第二个数字或字母代表周数,第 1 周:数字 1,2345678 依此类推到第 9 周:数字 9 。第 10 周开始用 大写字母 A B C......Z, 依此类推“ Z ”代表第 35 周。第 36 周开始用小写字母 abcd......z 依此类推到本年份 的最后一周。 XX :第三个和第四个代表内部序号
创建一条关于我即将在卡内基梅隆大学(CMU,匹兹堡)发表的演讲的热门推文,标题为“大型语言模型的水印”。主题包括水印、检测人工智能生成的文本、保护模型的版权。尽量让它风趣幽默。
随着人工智能生成的文本越来越像人类书写的内容,检测机器生成文本的能力变得至关重要。为了应对这一挑战,我们提出了 GPTWatermark,这是一种强大而高质量的解决方案,旨在确定一段文本是否源自特定模型。我们的方法扩展了现有的水印策略,并采用固定组设计来增强对编辑和释义攻击的鲁棒性。我们表明,我们的带水印的语言模型在生成质量、检测正确性和针对规避攻击的安全性方面享有强有力的可证明保证。在各种大型语言模型 (LLM) 和不同数据集上的实验结果表明,我们的方法实现了卓越的检测准确率和可比的复杂度生成质量,从而促进了 LLM 的负责任使用。代码可在 https://github. com/XuandongZhao/GPTWatermark 获得。