摘要:本研究旨在研究识别前额叶皮层中大脑活动的任务,这些任务与不同偏好水平的音乐相对应。由于有关主题最喜欢的音乐影响的任务表现会导致更好的结果,因此我们专注于对音乐偏好水平的脑电图(EEG)乐队的物理解释。实验是使用连续响应数字界面实现的,用于三种类型的音乐刺激的偏好分类。结果表明,最喜欢的歌曲比低和中等偏好水平的音乐更为引人注目。此外,额叶theta与认知状态的相关性表明,额叶theta不仅与认知状态有关,而且与情感处理相关。这些发现表明,最喜欢的歌曲对听众的积极影响比不太有利的音乐产生了更多的积极影响,并暗示额叶皮质中的Theta和Lower Alpha是认知状态和情感的良好指标。
MACT-SEL MACT用于选择性注意力技能MAL运动活动LOG MD MD MEFT音乐执行功能训练MEG磁脑电图MEM音乐回声记忆训练MET代谢等效的MIDI MIDI乐器数字界面MIT旋律语调MIT旋律INDONAPIC MMIP音乐情绪诱导过程MMT情绪和记忆训练; musical mnemonics training MNT musical neglect training MPC music in psychosocial training and counselling MPC-MIV MPC mood induction and vectoring MPC-SCT MPC social competence training MRI magnetic resonance imaging MSOT musical sensory orientation training MUSTIM musical speech stimulation NMT neurologic music therapy OMREX oral motor and respiratory exercises PD Parkinson's disease PECS Picture Exchange Communication System PET positron emission tomography PNF proprioceptive neuromuscular facilitation PROMPT prompts for restructuring oral muscular phonetic targets PRS perceptual representation system PSE patterned sensory enhancement QoL quality of life QUIL quick incidental learning RAS rhythmic auditory stimulation RCT randomized controlled trial RMPFC rostral medial prefrontal cortex ROM range of motion RSC rhythmic speech cueing
1 缺乏无障碍交通会对一个人寻找工作机会、接受教育、维持社交生活甚至接受医疗保健的能力产生负面影响。然而,创新和技术有可能使交通更加包容和无障碍,特别是在数字技术领域——为了使这些进步真正发挥作用,技术开发和资金必须与政策和更广泛的社会目标保持一致。INDIMO、DIGNITY 和 TRIPS 等项目是交通技术和数字化如何具有包容性的绝佳例子。INDIMO(包容性数字移动解决方案)旨在打破人们在使用数字互联交通系统时面临的障碍。它通过使用通用设计的建筑概念并尝试提高移动数字创新的可访问性来实现这一目标。通过与实践社区合作,INDIMO 共同创建了促进包容性和可访问性通用设计的工具,进而有助于影响未来的政策。必须确保数字界面易于使用且可供广大受众使用,包括那些可能面临脆弱风险的人,例如残疾人、精神健康问题人士、老年人或儿童。例如,界面应考虑人际接触的需要或确保(网络)安全和隐私。INDIMO 还强调了超越其工具箱的重要性,通过 SUMP 将通用设计纳入欧盟交通战略和地方层面。通过这样做,我们可以努力实现真正包容和可访问的交通系统和城市。
摘要 - 途径高密度和高通道计数神经接口,能够同时记录成千上万的神经元的同时记录,将为学习,恢复和增强神经功能提供一个门户。但是,在完全植入的设备的比特率极限和功率预算内建立此类技术是具有挑战性的。使用在类似物到数字界面处使用有损耗的压缩,有线或压缩读数架构解决了高通道计数神经界面的数据洪水挑战。在本文中,我们评估有线或对神经工程至关重要的几个步骤的适用性,包括尖峰检测,尖峰分配和波形估计。对于有线或有线信号的各种接线配置以及基础信号质量的假设,我们表征了压缩比和特定任务信号保真度指标之间的权衡。使用来自猕猴视网膜中的18个大尺度微电极阵列记录的数据,我们发现,对于7-10的事件SNR,有线或正确检测并分配了至少80%的尖峰,至少具有50倍压缩。有线或方法还鲁棒地编码动作电势波形信息,从而实现了下游处理,例如细胞类型分类。最后,我们表明,通过将基于LZ77的无损耗压缩机(GZIP)应用于有线或体系结构的输出,可以在基线记录中实现1000倍压缩。
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。
背景:用药指南包含重要的相互作用和副作用,内容广泛而复杂。由于信息详尽,患者无法记住必要的用药信息,这可能导致住院和不遵守用药规定。在理解患者管理复杂用药信息的认知方面存在差距。然而,技术和人工智能 (AI) 的进步使我们能够了解患者的认知过程,从而设计一款应用程序,更好地向患者提供重要的用药信息。目标:我们的目标是改进基于人工智能和人为因素的创新界面的设计,以支持患者理解用药信息,从而有可能提高用药依从性。方法:本研究有三个目标。目标 1 分为三个阶段:(1) 观察性研究,以了解患者对用药信息的恐惧和偏见的感知,(2) 眼动追踪研究,以了解用药信息的注意力中心,以及 (3) 心理不应期 (PRP) 范式研究,以了解功能。将收集观察数据,例如音频和视频记录、凝视映射和 PRP 时间。本研究将纳入总共 50 名患者,年龄在 18-65 岁之间,他们开始服用至少一种新药物(我们为其开发了可视化信息),并且在使用 TICS-M 测试和健康素养水平进行的认知筛查中认知状态为 34。在目标 2 中,我们将利用从目标 1 的每个组件获得的知识,以智能手机应用程序的形式迭代设计和评估一个由人工智能驱动的药物信息可视化界面。界面将通过两次可用性调查进行评估。总共将招募 300 名患有糖尿病、心血管疾病或精神健康障碍的 18-65 岁患者参加调查。调查数据将通过探索性因子分析进行分析。在目标 3 中,为了测试原型,将采用双臂研究设计。该目标将包括 900 名患者,年龄在 18-65 岁之间,可以上网,没有任何认知障碍,并且至少服用两种药物。患者将按顺序随机分配。将使用三项调查来评估药物信息理解的主要结果和 12 周时药物依从性的次要结果。结果:初步数据收集将于 2021 年进行,结果预计将于 2022 年公布。结论:这项研究将引领基于人工智能的创新数字界面设计的未来,并有助于提高药物理解,从而可能提高药物依从性。这项研究的结果也将开启未来的研究
# 顾问 摘要 最近的研究表明,电子游戏会改变青少年的认知能力,但尚不清楚青少年的认知能力在玩完电子游戏后短期内如何变化。这项研究测量了玩电子游戏 (VGP) 的青少年在玩完电子游戏后不同时间间隔的选择性注意力、处理速度、持续注意力和认知灵活性的差异。使用了三种不同的推理测试:节奏听觉序列加法测试 (PASAT)、持续注意反应任务 (SART) 和斯特鲁普任务。还使用了自定义的 250 个问题算术测试,但无法发现玩电子游戏后 VGP 之间的处理速度差异。研究中的所有 VGP 参与者在玩电子游戏之前都接受了推理测试,玩了英雄联盟 (LoL)——以大量使用空间意识、认知决策和工作记忆而闻名——一小时,然后在玩完 LoL 后的不同时间再次进行推理测试。这项实验证实了电子游戏可以提高认知能力,尽管实验发现,随着时间的推移,VGP 青少年在玩电子游戏后,选择性和持续性注意力会下降。未来的研究可能希望扩展时间变量,以测试电子游戏如何在更长时间内以更大的样本量影响注意力或认知。简介随着 1989 年蒂姆·伯纳斯·李爵士发明的万维网,全球范围内信息量激增。最终,电子游戏(一种用户与数字界面互动的娱乐形式)出现在互联网上:这些游戏被称为网络游戏,它们增加了电子游戏的受欢迎程度。全球有超过 20 亿人玩电子游戏(Newzoo,2017 年),美国约有 1.5 亿人玩电子游戏(娱乐软件协会,2019 年)。随着人们对电子游戏的兴趣大增,许多神经科学家和心理学家开始思考电子游戏对人类大脑的影响。他们发现,当人们玩电子游戏时,认知,即大脑思考、感知或行动的方式,会发生变化。电子游戏涉及空间认知的使用,其中眼睛中的数百万个感觉神经元处理视觉信息(Spence & Feng,2010)。然而,大脑无法解释所有的视觉数据,必须增强认知操作来检测特定图像以保持空间意识——通过提高快速图像检测和空间意识,认知会发生改变。(Spence & Feng,2010)。文献综述在过去的几十年里,人们结合心理学和神经科学对电子游戏进行了研究。随着磁共振成像(MRI)、功能性磁共振成像(fMRI)和认知推理测试的发展,研究人员已经能够衡量电子游戏对人类心理的影响。
可能的未来并研究人员,数据,机器和环境的纠缠。艺术家在CámaraLeret,Adam Harvey,Keziah Macneill和Alex Fefegha为其发展做出了贡献,并在ARS Electrica Electrica的新型Real Pavilion在ARS Electrica 2022在Ars Electria,在AROULIA的ARPATION,在AROUTIA的活动中,陪伴与之互动的艺术品在AROULIA,以及一个研究人员参与研究Hub的Ars Electrica converory the New Real Pavilion上首映的艺术品。新的真实天文台生成的AI平台2022年平台为艺术家打开数据和算法,以探索和发现艺术家,并能够反思人类共同创作的新颖概念。它集成了本地化的气候预测模型,并由一系列可用的AI工具和流程提供动力,这些工具和过程已集成,以允许用户在Visual(Image)或符号(文本)语言中构建和探索感兴趣的维度。平台在生成过程中为艺术家代理提供了代理商,同时又可以根据用户自己的数据探索ML模型。InésCámaraleret的覆盖层,2022年覆盖层探索了自然局部表示的构建和人为性。作品引用了迪斯尼的“脱离绿色”:一种颜色,该颜色设计为掩盖主题公园中的难看但必要的物体。cámaraleret与AI处理引擎合作,对绿色和建筑环境的图像进行了微调,以揭示当地社区的绿色色调。亚当·哈维(Adam Harvey)的循环扩散,2022年,亚当·哈维(Adam Harvey)在这项新作品中反映了生成性AI技术的危险和可能性及其与能源和宣传的关系。多组分艺术品功能:一个数字界面,可让任何人在地球上任何地方找到其本地绿色;传统的集市骑行中的重新涂层物体;以及一部多渠道电影,其中当地的色调由西班牙的最后一个活着的彩色家制作,并被当地社区以其物质形式吸收。图像的集合,标题为“圆形扩散”,引用了新开发的AI扩散算法,它们可以自动产生令人敬畏的图像的能力以及推断的圆形逻辑。AI通常被认为是具有无限解决问题能力的充满希望的技术。但是新解决方案可以创建新问题。生成的AI容易幻觉,当应用于气候变化时,会产生以科学语言掩盖的非科学输出。此外,使用生成的AI解决气候变化可以扩大现有问题:减轻气候变化意味着减少能量,但是开发AI需要大量它。Keziah MacNeill的摄影提示,2022年的摄影提示在算法时代探索了摄影图像的未来,并带来了一个投机性的未来,其中自然景观的特征,例如苏格兰湖中的水体特征是唯一的模拟镜头形式。麦克尼尔(MacNeill)调整到神经网络的操作中,探索算法图像制作以及在气候紧急情况下进行调查和查看土地的新方法。所展示的工作带来了虚构的未来,在该未来中,苏格兰湖成为一个地点,可以体验数字和雕塑界面中水从水中浮出水面的慢赠与。新的Real的新真实馆和研究中心,2022年,Artworks和平台的演示是由新的Real Pavilion的弹出式研究中心进行了背景。ARS Electronica 2022的访问者被邀请到艺术家,策展人和科学家参加演讲和旅行,以在展览和艺术品的主题上进行对话,并在展览空间中引起的反馈和洞察力的讲习班和印刷卡。