Orbit 专注于提供通信管理系统已有 40 多年,是行业向数字通信技术转变的先驱。我们专门的 24/7 服务团队为客户和合作伙伴提供高水平的服务和响应能力。Orbit 的解决方案在全球拥有 1,800 多个安装点,部署在无数平台上,包括 C-130、KC-135、King Air 350、P-3、F-15、F-16、MIG 21、CH-53、Mil 8、T-38 等。Orbit 的客户包括许多世界航空业领导者,例如空客军用、波音、洛克希德马丁、罗克韦尔柯林斯、巴西航空工业公司、湾流和庞巴迪。我们经过验证的 CMS 产品经过认证,符合最苛刻的用户(包括美国海军和美国海关与边境保护局)的严格标准和规格。
Orbit 专注于提供通信管理系统已有 40 多年,是行业向数字通信技术转变的先驱。我们专门的 24/7 服务团队为客户和合作伙伴提供高水平的服务和响应能力。Orbit 的解决方案在全球拥有 1,800 多个安装点,部署在无数平台上,包括 C-130、KC-135、King Air 350、P-3、F-15、F-16、MIG 21、CH-53、Mil 8、T-38 等。Orbit 的客户包括许多世界航空业领导者,例如空客军用、波音、洛克希德马丁、罗克韦尔柯林斯、巴西航空工业公司、湾流和庞巴迪。我们久经考验的 CMS 产品经过认证,符合最苛刻的用户的严格标准和规格,包括美国海军和美国海关与边境保护局。
此处描述的应用仅用于说明目的。Alcorn McBride Inc. 对这些产品的使用不承担任何责任或义务,并且不声明或保证这些产品在没有进一步测试或修改的情况下适用于特定应用。Alcorn McBride 产品不适用于故障可能导致人身伤害的应用。使用或销售 Alcorn McBride 产品用于此类应用的客户自行承担风险,并同意对因此类不当使用或销售而造成的任何损害向 Alcorn McBride 进行全额赔偿。
所有 DIGAM 放大器均安装在标准 19 英寸机架中。提供四个前面板安装孔。您的 DIGAM 放大器使用从前到后的强制风冷系统来保持较低且均匀的工作温度。空气由内部风扇吸入,流经前面板上的插槽并穿过组件。DIGAM 系列放大器具有“智能”变速直流风扇,该风扇由散热器温度传感电路控制:只有当任一散热器的温度需要时,风扇速度才会增加,从而将风扇噪音降至最低并有助于减少内部灰尘堆积。在极端热负荷下,风扇将迫使大量空气通过散热器。如果任一散热器过热,其传感电路将降低输出增益。如果放大器过热,另一个传感电路会关闭其电路以切断电源,直到其冷却到安全温度。排气冷却空气被迫通过底盘后部排出,因此请确保放大器侧面有足够的空间让空气逸出。如果是机架安装,请确保排气可以无阻力流动。如果您使用的是背面封闭的机架,则每四个放大器在机架前部必须至少有一个标准机架空间开口。放大器可以直接堆叠在一起(设备之间不需要空间),从机架底部开始。操作注意事项
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。
MUSC 1100音乐的基本原理3.0(B-或更高)PHYS 1700描述性声学3.0 MAT 1010,(B级或更高)DAPR 1000数字音频1.0 DAPR 1030数字音频工作站培训I 1.0 DAPR 2000/2000/2000/2000/2000 DAPR 1031 DIBLIO AUDIO AUDIO培训II 3.0 3.0 3.0 3.000000000000000000000其中10330 DAPR Audio Essentials 3.0 MAT 1030/1035 or MATH 1050/1055 (B‐ or Higher) DAPR 200L Digital Audio Essentials Lab 3.0 DAPR 2001 Audio Portfolio Prep 1.0 DAPR 1000 DAPR 2010 Core Recording 3.0 DAPR 2000/200L (B‐ or Higher) DAPR 201L Core Recording Lab 1.0 DAPR 2030 Core Mixing 3.0 DAPR 2010/201L (B‐ or Higher) DAPR 203L Core Mixing Lab 1.0 DAPR 2080 Podcast and Radio Production 3.0 DAPR 2240 Digital Audio Restoration 3.0 DAPR 2000 DAPR 301R Digital Lecture Series 1.0 UAS DAPR 3010 Advanced Recording 3.0 DAPR 2020, UAS & Portfolio Review Acceptance DAPR 301L Advanced Recording Lab 1.0 DAPR 2020, UAS & Portfolio Review Acceptance DAPR 3020 Advanced Mixing 3.0 B‐ or Higher in DAPR 2020, DAPR 3010 UAS & Portfolio Review Acceptance DAPR 302L Advanced Mixing Lab 1.0 B‐ or Higher in DAPR 2020, DAPR 3010 UAS & Portfolio Review Acceptance DGM 3110 Corporate Issues 3.0 UAS & Portfolio Review Acceptance DGM 312G Digital Media for Intercultural Communication 3.0 UAS & Portfolio Review Acceptance DAPR 4085 Writing for Digital Audio 3.0 ENGL 2010, UAS & Portfolio Review Acceptance DAPR 4220 Audio Mastering 3.0 DAPR 3020, UAS & Portfolio Review Acceptance DAPR 490R Senior Capstone 3.0 DGM 3220, UAS & Portfolio Review Acceptance DAPR 490R Senior Capstone 3.0 DGM 4310, UAS & Portfolio Review Acceptance Complete 18 Credits in one of the按照推荐的轨道。有关下面列出的曲目
这就是为什么我总是试图设置一个很有可能让我感到惊讶的情况,或者偶然发现真正重要的事情。所以我决定完全出乎意料地聆听你的文件,不与任何其他东西进行比较,除了我从无数场演出和演示中获得的记忆,我在不同的扬声器系统上使用这些曲目。实际上,我在 dCS 周年庆典期间为它做了一次路演,在我的录音中发现了许多确实让我感到惊讶的新方面,这逐渐发展成为一种学习体验,告诉我没有真理存在。一天的突发奇想,甚至个人的陪伴都可以改变意识和感知。界面创造了当下的现实,现在有效的东西在不同情况下随时都可能变成问题。尽管如此,我确实有信心,我了解自己的工作,并且可以通过任何给定的界面,非常彻底地确定我试图通过我的录音技术传达的内容是否会在一定程度上在回放中重现。
1 简介1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . 1.3.2 接口 1-2 . . . . . . . . . . . . . . . . . 1.3.3 电气和物理 1-2 . . . . . . . . . . . . . . . . 1.4 应用 1-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 数字音频控制 1-2 . . . . . . . . . . . . . . . 1.4.2 均衡 1-2 . . . . . . . . . . . . . . . . . . . . 1.4.3 扬声器有源分频器 1-2 . . . . . . . . . . . . . . . 1.5 功能框图 1−3 . . . . . . . . . . . . . . . . 1.6 混频/输入缩放 1−3 . . . . . . . . . . . . . . . . . . . . 1.7 高精度二阶双二阶滤波器结构 1−4 . . . . . . . . . 1.8 低音和高音控制 1−6 . . . . . . . . . . . . . . . . . 1.9 软音量和真正软静音 1−6 . . . . . . . . . . . . . . . . . 1.10 数字滤波的可靠性和灵活性 1−7 . . . . . . . . . . . . . . 1.11 引脚分配 1-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 引脚功能 1-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 电源 1−8 . . . . . . . . . . . . . . . . . . . . . . . 2 音频数据格式 2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... .... 3.1 I 2 C 协议 3−1 . .... .... ..................... ... . . . . . . . . . 3.2.2 I 2 C 时序和等待周期3−2. . . . . . . . . . . . . . 3.2.3 重置 TAS3001 I 2 C 接口3−3. . . . . . . . . . . . 3.2.4 上电条件3−3. . . . . . . . . . . . . . . . 3.2.5 I 2 C 串行端口时序 3−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 数字音频处理器 4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................
在将产品发送至服务中心进行维修之前,我们建议您仔细检查本手册中包含的说明。检查安装是否正确。如果您仍然无法解决问题,请联系我们的 AEV SERVICE 技术支持进行澄清。如果问题很简单,电话解释可能就足够了。无论如何,只有在发送 RMA 退货授权号后,SERVICE AEV 才能接受设备。该编号必须包含在与维修退货单相关的文档中。我们还建议您提供对设备上发现的缺陷的详细说明,并可能包含与您在 AEV SERVICE 交谈过的人员的姓名。AEV 不接受包含运输费用的维修材料,在这种情况下,材料将被拒绝。
电路板布局 TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。电路板上最关键的组件之一是电源去耦电容。如图所示,C674 和 C451 必须放置在引脚 22 和 19 的旁边。如图所示,C673 和 C451B 必须放置在引脚 25 和 28 的旁边。输出级的这些电源去耦电容不仅有助于抑制电源噪声,而且还能吸收放大器输出过冲引起的 VDD 引脚上的电压尖峰。在发生高电流开关事件(如短路)期间,输出电感器反激也可能导致电压过冲