摘要 - 5G网络的快节奏增长以及6G技术的出现,强调了强大的安全措施对维护通信基础架构的至关重要。5G数据网络中的一个关键安全问题分布式为拒绝服务(DDOS)AT-TACS,该问题专门针对基于GTP的协议,这是一个重大威胁。但是,网络遥测数据提供了有关网络流量性质的丰富信息来源,可用于检测和预测DDOS攻击。我们提出了一个新的框架,用于在5G网络中收集和处理大量遥测数据,利用最先进的技术,包括基于P4的基于P4的用户平面功能(UPF)和数据处理单元(DPU)中的数据平面可编程性。此外,我们提出了一种使用卷积神经网络(CNN)来检测DDOS攻击的反向检测方法,用于对网络流量进行实时深度学习分析。我们的结果证明了我们框架的有效性,达到了令人印象深刻的98.6%精度和98%的F1得分。索引术语 - 网络,DDOS,检测,P4lang,teleme-tre,流量分析
摘要 — 在对抗网络攻击的斗争中,网络软件化 (NS) 是一种灵活且适应性强的盾牌,它使用先进的软件来发现常规网络流量中的恶意活动。然而,移动网络的综合数据集仍然有限,而这些数据集对于开发用于在源头附近检测攻击的机器学习 (ML) 解决方案至关重要。跨域人工智能 (AI) 可以成为解决这一问题的关键,尽管它在开放无线接入网络 (O-RAN) 中的应用仍处于起步阶段。为了应对这些挑战,我们部署了一个端到端 O-RAN 网络,用于从 RAN 和传输网络收集数据。这些数据集使我们能够结合来自网络内 ML 流量分类器的知识进行攻击检测,以支持专门为 RAN 量身定制的基于 ML 的流量分类器的训练。我们的结果证明了所提出方法的潜力,准确率达到 93%。这种方法不仅弥补了移动网络安全方面的关键差距,而且还展示了跨域 AI 在提高网络安全措施有效性方面的潜力。索引词——跨域人工智能;攻击检测;移动网络;O-RAN;5G。I. 引言网络攻击呈上升趋势 [1],网络处于防御的第一线。交换机、路由器、服务器和最终用户都需要保护以免受恶意威胁。网络软件化 (NS) 已成为这场斗争中的关键工具,它提供灵活性、可扩展性以及快速部署尖端软件解决方案的能力。NS 可帮助安全专业人员在大量良性网络流量中识别恶意活动。在对抗网络对手的斗争中,适应和快速应对新威胁的能力至关重要。因此,NS 可实现现代网络基础设施的弹性和完整性 [2]。在 NS 方面,软件定义网络 (SDN) 开创了高级可编程性的新时代。除其他功能外,它还允许将 ML 集成到数据平面 [3]–[5]。可编程网络设备彻底改变了网络的各个方面,实现了基于机器学习的动态拥塞控制策略 [6]、[7]、智能负载平衡机制 [8]、[9] 和精确的服务质量 (QoS) 管理 [10]–[12]。最近有许多出版物研究了流量分类 [13]–[17],其中 [15]–[17] 中的研究使用流量分类进行攻击检测。尽管可编程数据平面被广泛使用,但在开发和部署新功能时仍需要考虑一些挑战。虽然 P4 语言提供了巨大的潜力,但诸如缺乏对浮点的支持等限制
第二次量子革命带来了量子互联网的希望。随着第一批量子网络硬件原型接近完成,新的挑战也随之而来。功能网络不仅仅是物理硬件,可扩展量子网络系统的研究还处于起步阶段。在本文中,我们提出了一种量子网络协议,旨在实现端到端量子通信,以应对量子力学带来的新基础和技术挑战。我们开发了一种量子数据平面协议,可实现端到端量子通信,并可作为更复杂服务的构建块。近期量子技术面临的一个关键挑战是退相干——量子信息的逐渐衰减——这对存储时间施加了极其严格的限制。我们的协议旨在应对较短的量子内存寿命。我们使用量子网络模拟器演示了这一点,并表明该协议即使在退相干导致严重损失的情况下也能提供服务。最后,我们得出结论,该协议在当今正在开发的资源极其有限的硬件上仍然有效,强调了这项工作的及时性。
网络内的机器学习推断提供了高吞吐量和低潜伏期。它位于网络内,电力效率并改善应用程序的性能。尽管有其标准,但网络内机器学习研究的限值很高,需要在可编程数据平面上进行大量专业知识,以了解机器学习和应用领域的知识。现有的解决方案主要是一次性的努力,很难跨平台复制,更改或端口。在本文中,我们介绍了种植者:一个模块化,有效的开源框架,用于在一系列平台和管道体系结构上快速原型化网络内的机器学习模型。通过识别机器学习算法的一般映射方法 - 播种机引入了新的机器学习映射并改进了现有的映射。它为用户提供了几个示例用例,并支持不同的数据集,并且用户已经将其扩展到新的字段和应用程序。我们的评估表明,与以前的模型量化作品相比,Planter改善了机器学习的能力,同时大大降低了资源消耗并与网络功能共存。在未修改的商品硬件上以线速率运行的种植者支持的算法,每秒提供数十亿个推理决策。
摘要 - 加密的交通分类(ETC)已成为机器学习(ML)方法的重要领域。但是,大多数现有的SOTICT要么基于收集的网络数据或在线依赖于离线等等,要么在软件定义网络(SDN)的控制平面中运行的模型,所有这些模型都不以线速率运行,并且将无法满足现代网络中时间敏感应用程序的延迟要求。这项工作利用了数据平面可编程性的最新进展,以实现可编程开关的实现,并具有很高的吞吐量和低延迟。所提出的解决方案包括(i)一个etc-感知的随机森林(RF)建模过程,其中仅根据数据包大小和数据包到达时间进行基于功能,以及(ii)将训练有素的RF模型编码到生产级P4可编程开关中。在40 GBPS的背景流量的情况下,使用3个带有Intel Tofino开关的实验的加密流量数据集评估了建议的内开关等框架的性能。结果表明,该解决方案如何达到高达95%的高分类精度,并以亚微秒延迟,而平均消耗少于可用的开关硬件资源的10%。索引术语 - 加密流量分类,机器学习,可编程开关,P4,随机森林
基于机器学习的应用程序的大量增长和摩尔定律的终结迫切需要重新设计计算平台。我们提出了 Lightning,这是第一个可重构的光子电子智能 NIC,用于满足实时深度神经网络推理请求。Lightning 使用快速数据路径将流量从 NIC 馈送到光子域,而不会产生数字数据包处理和数据移动瓶颈。为此,Lightning 利用了一种新颖的可重构计数动作抽象,可以跟踪每个推理包所需的计算操作。我们的计数动作抽象通过计算每个任务中的操作数将计算控制平面与数据平面分离,并在不中断数据流的情况下触发下一个任务的执行。我们使用四个平台评估 Lightning 的性能:原型、芯片综合、仿真和模拟。我们的原型展示了以 99.25% 的准确率执行 8 位光子乘法累加运算的可行性。据我们所知,我们的原型是频率最高的光子计算系统,能够以 4.055 GHz 的速度端到端处理实时推理查询。我们对大型 DNN 模型的模拟表明,与 Nvidia A100 GPU、A100X DPU 和 Brainwave smartNIC 相比,Lightning 将平均推理服务时间分别加快了 337 × 、329 × 和 42 × ,同时消耗的能量分别减少了 352 × 、419 × 和 54 × 。
本评论简要探讨了在软件定义网络 (SDN) 的流量工程 (TE) 中部署机器学习 (ML)。SDN 通过将控制平面与数据平面分离来改变传统的网络管理,为灵活和自适应的流量控制开辟了新的可能性。正如我们所展示的,SDN 中的 TE 可以通过更有效地利用资源、减少延迟和减少拥塞来优化网络性能——同时响应实时条件以保持高服务质量 (QoS)。然而,充分利用这些优势需要先进的算法和实时数据分析,这在计算上要求很高。TE 还依赖于拥有准确、最新的网络信息。同时,ML 通过与边缘计算、网络功能虚拟化 (NFV) 和物联网 (IoT) 等技术集成,使 SDN 更加有效。这种组合可以实现实时分析、快速决策、智能路由、负载平衡和更强大的安全性。然而,这些集成带来了可扩展性和互操作性方面的新挑战,这意味着我们需要在基础设施和专业知识方面进行大量投资。即使迄今为止取得了所有进展,但仍存在一些障碍。 其中包括扩展、保持强大的安全性以及实时做出瞬间决策的问题。 展望未来,未来的研究应集中在自主网络、节能的 ML 技术和混合 ML 解决方案上,旨在达到网络安全和性能的新高度。
摘要 - 生成的人工智能(GAI)已成为一个快速新兴的领域,该领域在智能和自动创建各种内容方面具有巨大的潜力。为了支持这种人工智能生成的内容(AIGC)服务,未来的通信系统必须满足严格的要求,包括高数据速率,吞吐量和低潜伏期,同时有效地利用有限的光谱资源。语义通信(SEMCOM)被视为一种革命性的交流计划,可以通过传达信息的含义而不是繁殖来应对这一挑战。gai算法是在模型预培训和微调,知识基础构建和资源分配方面,为启用智能有效的SEMCOM系统的基础。相反,SEMCOM可以提供较低延迟和高可靠性的AIGC服务,因为它可以执行数据编码和压缩数据以及基于知识和上下文的推理的能力。在这项调查中,我们通过研究GAI-DRIENS SEMCOM网络的架构,无线通信方案和网络管理来打破新的基础。我们首先引入了一种用于GAI驱动的SEMCOM网络的新型体系结构,其中包括数据平面,物理基础架构和网络控制平面。反过来,我们对端到端GAI驱动的SEMCOM系统的收发器设计和语义有效性计算提供了深入的分析。最后,我们探索了几个承诺的用例,即自动驾驶,智能城市和元视频,以提供GAI驱动的SEMCOM网络的全面理解和未来方向。随后,我们在拟议的网络中介绍了创新的生成水平和知识管理策略,包括知识结合,更新和共享,确保基于知识的准确性推理。