药物系统提供和/或利用的数据通常分为两类:(a)事实药物数据和(b)知识药物数据。事实药物数据主要包括药物处方和药物管理数据,医院通常将这些数据以出院信或药单中的自由文本形式存档。已经提出了几种对事实药物数据进行信息检索的方法:信息提取和自由文本搜索 [1]、机器学习 [2]。然而,实现有效的信息检索系统除了需要使用事实数据外,还需要使用知识数据。知识图谱结构(包括概念图形式主义 [3])已用于生物医学知识,数据表示特别适合药物知识数据 [4]。现有的药物数据库(如 Wikidata [5]、Drug Bank 2 或 GoodRx 3)包含有价值的信息,但如果单独获取和/或将其中一些信息存储为非结构化数据则缺乏全面性 [6]。本研究介绍了一种系统的设计,该系统能够检索法国诺曼底鲁昂大学医院诺曼底健康数据仓库 (EDSaN) [7] 中的处方订单。药物知识数据的概念图如下:
* zhenlong@psu.edu摘要:由新兴的大语言模型(LLMS)提供支持,自主地理信息系统(GIS)代理有可能完成空间分析和制图任务。但是,存在一个研究差距来支持完全自主的GIS代理:如何使代理商发现和下载必要的数据进行地理空间分析。本研究提出了一个自主GIS代理框架,能够通过生成,执行和调试程序来检索所需的地理空间数据。该框架利用LLM作为决策者,从预定义的源列表中选择适当的数据源,然后从所选源中获取数据。每个数据源都有一个手册,可记录数据检索的元数据和技术细节。所提出的框架以插件样式设计,以确保灵活性和可扩展性。人类用户或自主数据刮擦者可以通过添加新手册来添加新的数据源。我们根据框架开发了原型代理,以QGIS插件(Geodata检索代理)和Python程序发布。实验结果证明了其从各种来源检索数据的能力,包括OpenStreetMap,美国人口普查局的行政界限和人口统计数据,来自ESRI World Imagery的卫星基本图,Opentopography.org的Global Digital Heipation.org,来自Opentopography.org的Global Digital Heipation.org,来自商业提供商的天气数据,来自Covid9 Case covid9 Case case the nytimmer github github github github。我们的研究是开发自主地理空间数据检索剂的首次尝试。
虽然MedDra等高度颗粒状的术语减少了在数据输入时对解释的需求,但它影响了数据检索,分类和表现的过程,这是支持药物开发,药物保护和风险管理所必需的。MEDDRA的层次结构通过提供分组术语(高级项[HLTS]和高级组项[HLGTS])来促进数据检索,从而汇总了用于编码为更广泛的医疗类别的非常具体的术语。MedDra的多轴性(将PT分配给多个系统器官类[SOC])可以通过主要和次要路径在数据检索中灵活。分组术语和多轴性允许采用合理的数据检索方法,但Meddra的复杂性需要指导以优化结果。