AE4-393:航空电子考试解决方案 2007-10-29 1. 通信、导航、监视 [a] 压力高度和飞机识别。 [b] 两种模式的工作原理如下: • SSR 模式 A:询问间隔 P 1 和 P 3 等于 8µs。应答器使用飞机识别码 (ACID) 回复,该码由 ATC 定义并由飞行员在应答器代码界面上设置。它是一个 12 位代码,即有 2 12 种可能性,或 4096 个代码。 • SSR 模式 C:询问间隔 P 1 和 P 3 等于 21µs。应答器以 100 英尺 (QNE) 的步长回复飞机压力高度。 [c] 应答器答复由两个帧脉冲之间均匀分布的十二个数据脉冲组成。 SSR 发射三个询问脉冲,P 3 、P 2 和 P 3 。P 3 相对于 P 1 和 P 2 的位置决定了应答器应以哪种模式 (A/C) 应答。然而,每个天线都有一个主瓣和几个旁瓣。信号如图 1.1 所示。
摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。