DR1560 提供各种数据接口,普遍适用于存储使用全波形激光扫描仪 RIEGL LMS-Q1560 和 LMS-Q780 以及 RIEGL 的新型在线波形处理 V 线激光扫描仪获取的数据。使用固态硬盘可提高在恶劣环境和高飞行高度下的可靠性。这些驱动器可热插拔,允许立即访问已获取的数据,随时可以在飞行中或在办公室进行分析。高达 150 MBytes/秒的数据速率可确保不间断地存储数据,满足当前和未来几代 RIEGL 高速激光扫描仪的要求。此外,在将扫描数据传输到固态硬盘之前,还会执行在线数据完整性检查。
DR1560 提供各种数据接口,普遍适用于存储使用全波形激光扫描仪 RIEGL LMS-Q1560 和 LMS-Q780 以及 RIEGL 的新型在线波形处理 V 线激光扫描仪获取的数据。使用固态硬盘可提高在恶劣环境和高飞行高度下的可靠性。这些驱动器可热插拔,允许立即访问已获取的数据,随时可以在飞行中或在办公室进行分析。高达 150 MBytes/秒的数据速率可确保不间断地存储数据,满足当前和未来几代 RIEGL 高速激光扫描仪的要求。此外,在将扫描数据传输到固态硬盘之前,还会执行在线数据完整性检查。
产品概述NSI1050是一个与ISO11898-2标准完全兼容的孤立的CAN收发器。NSI1050集成了两个通道数字隔离器和高可靠性可以收发。数字隔离器是基于NovoSense能力隔离技术的氧化硅隔离。高集成解决方案可以帮助简化系统设计并提高可靠性。NSI1050设备由UL1577支撑5kV RMS绝缘材料的安全性确保承受电压,同时提供高电磁免疫力和低排放。NSI1050的数据速率高达1Mbps。NSI1050提供了热保护并传输数据主导时间外功能。关键功能
在展示了英特尔以太网 E810 网络适配器和 NVIDIA Mellanox ConnectX-5 适配器之间的性能对等后,该团队正在评估即将发布的英特尔以太网 E830 网络适配器,该适配器提供高达 200 千兆位每秒 (Gbps) 的最大数据速率、PCIe 5.0x8 主机互连支持、精确的计时功能以及全面的安全性和可管理性功能。网络适配器可以支持更高的带宽工作负载要求。该团队还在考虑英特尔® 基础设施处理单元 (IPU) 适配器。英特尔 IPU 适配器能够执行各种与基础设施相关的任务,包括隔离租户和提供商网络和存储 (NVME) 卸载、安全性、存储和虚拟化以及网络。
卫星供电的直接到设备 (D2D) 市场已成为电信行业的下一个大热点,它依赖于卫星运营商、地面移动网络运营商 (MNO) 和全球物联网 (IoT) 市场服务的融合。本文探讨了 D2D 创新者和领导者以及可能推动或延缓市场发展状态的技术和监管驱动因素。要了解这个新兴的 D2D 市场,还必须评估战略合作伙伴关系和监管问题,包括频谱接入和许可。许多成功的演示已经证明了连接卫星和现成的消费级手机的技术可行性,但可扩展性和低数据速率服务市场的问题仍然存在。
操作、时间配置文件、所需时间参考/同步等。实验将通过数据链路与航天器的航空电子设备连接。一个链路将用于实验的指挥和管理(小型卫星平台或立方体卫星标准接口的典型数据总线),如果需要,将提供一个高比特率链路用于数据收集,最大典型数据速率为 100 Mb/s。使用这些链路,实验将能够访问至少 TBD Gbit 的数据存储。在选择航天器时将提供接口的详细规范。数据将被转储到 TBD 位置的主地面站。注意:其他特定接口应由实验本身(独立实验)生成,因为不能保证由航天器提供。
摘要 — 在高剂量脉冲带电粒子束中,所有在线探测器都会因离子复合而饱和。因此,不可能单独计数探测器脉冲。碳化硅由于其高带隙、高热导率和高位移能量而被视为替代品。实时分析波形在带宽、可测量能量范围、传感器尺寸、数据速率方面具有挑战性。在此背景下,设计了一个用于辐射信号处理的模拟前端 (AFE)。它基于跨阻放大器 (TIA) 和电荷敏感放大器 (CSA) 来分析生成信号的形状。描述了用于表征高探测器电容 AFE 的方法。还介绍了从辐射环境中的模拟、实验和测量中提取的结果。
移动通信、无线数据传输和即时访问技术日益普及,需要更快的数据速率和更多的数据通道来支持越来越多的用户及其设备。为了满足这些需求,电路必须做得更小,性能也比以往更快。制造商实现这一目标的一种方法是利用具有良好介电性能(复介电常数)的材料来制造这些电路(例如 FR 4 和 RF Duroid 等)。另一种方法是在更高的频率范围内设计这些组件和设备,以便提供更多带宽来更有效地传输数据。然而,虽然制造商引用了现有材料在低频下的良好介电常数,但这些相同的解决方案可能不适合设计高频 RF 和微波应用。
摘要:自由空间光学通信在太空中起着重要作用 - 陆地集成网络,因为它的优势包括与常规射频(RF)技术相比,数据速率perfor⁃Mance,低成本,增强安全性。与此同时,Cubesats在低地轨道(LEO)网络中变得很流行。这是造成低成本,快速响应以及组成星座的可能性的原因,并愿意执行单个大型卫星无法做到的任务。但是,在立方体之间建立光学通信链接是一项困难的任务。在本文中,审查了Cubesats上的切割 - 边缘激光技术的进步。显示了立方体上激光链路的字符以及激光通信终端(LCT)设计中的关键技术。