1. 背景 1944 年《芝加哥公约》之后,航空业开始标准化全球商业航空业兴起所需的物理基础设施。跑道设计、航站楼登机口、飞机燃料和电源连接、餐饮设备、行李处理、服务车辆等项目都已标准化,以便航空公司可以使用通用地面基础设施来支持其在世界各地机场之间的运营。这一运动要求飞机设计标准化以符合新的设计标准;通信设备也紧随其后。 70 年代末,航空无线电公司 (ARINC) 对飞机通信寻址和报告系统 (ACARS) 协议进行了标准化。此外,在 80 年代,现有的基于全球开放系统互连 (OSI) 的航空电信网络 (ATN) 通信网络得到了开发和标准化,该网络支持未来空中导航系统 (FANS)、管制员-飞行员数据链路通信 (CPDLC) 和 ACARS 的空对地全球消息传递。
跟踪层是一个不断扩展的星座,最终将在低地球轨道 (LEO) 上部署 100 多个具有星载能力的航天器 (SV),旨在探测和跟踪常规和先进导弹威胁的红外特征。每个跟踪 SV 都配置了一个红外传感有效载荷。跟踪层将提供对常规和先进导弹威胁(包括高超音速导弹系统)的全球持续指示、检测、警告、跟踪和识别。跟踪层还将通过在星座中加入火控质量红外传感器来展示导弹防御能力。跟踪层将与 PWSA 传输层集成,通过数据链路直接提供任务数据。随着 PWSA 的 2 年螺旋式发展(称为“阶段”),将部署更多的跟踪层 SV 来扩展星座,并最终通过有针对性的技术增强来补充 SV。
摘要 航空领域的空地链路使用了大量无线通信协议,包括数据链路和空中交通管制技术。随着现代软件定义无线电技术的广泛普及,航空领域的威胁模式发生了变化。独立安全研究人员和科学家已经表明,所有这些协议中的根本缺陷都很容易被利用,从而影响用户的安全和隐私。本文全面分析了航空空地链路的现状。我们收集并分类了与七种主要空地技术有关的已知安全和隐私事件。我们发现,在文献中,所有这些都被认为是脆弱的,并且已经发生了许多与潜在违规和利用有关的事件。在这项工作的第二部分,我们调查、系统化并讨论了可能的对策的学术研究。我们创建了一种新颖的分类法,在此基础上我们确定了文献中的差距并讨论了航空安全研究的未来潜在方向。
利用 microLED 显示技术解决芯片间数据通信瓶颈 Bardia Pezeshki AvicenaTech Corp.,1130 Independence Ave,Mountain View,CA94043,www.avicena.tech 关键词:MicroLED、多芯光纤、光互连 摘要 在硅 IC 上制造的 MicroLED 显示器可以以空间复用格式形成高度并行的数据链路。如此宽的低功耗数据总线可以解决 4000 亿美元 IC 行业最大的痛点之一。我们展示了转移到硅 CMOS 电路上的高速 microLED,其中包括 LED 的集成驱动器、集成 Si 探测器和放大器。这些芯片的运行速度达到 Gb/s,可以与多芯光纤连接,在标准硅 ASIC 之间建立简单的低成本数据路径。我们使用 130nm CMOS 工艺展示了这些链路,每比特 <2pJ,并在 BER 和模式分割噪声方面展示了它们与 FP 激光器相比的卓越性能。 介绍
摘要 — 多波段相干通信被视为一种有希望的候选技术,可满足日益增长的更高数据速率和容量需求。同时,相干通信有望在不久的将来进入数据中心领域。随着数据和电信领域的相干数据链路跨越多个光波段,相干收发器设计和流量工程的新方法将成为必需。在本文中,我们提出了一种用于 O 波段和 C 波段的单片集成硅光子相干接收器。该接收器采用 2×2 多模干涉耦合器网络,作为针对 1430 nm(E 波段)优化的 90 ◦ 混合。总功耗为 460 mW,占地面积约为 6 mm 2,光电带宽为 33 GHz。 64 GBd 操作在 O 波段和 C 波段上得到演示,这与 C 波段最先进的硅光子相干接收机相比具有竞争力,并且是 O 波段相干通信迄今为止的最高符号率。
UUV 操作概念在四个重要领域受到技术限制:导航精度、通信带宽、强大的自主任务控制功能和电力系统能量密度。当前导航领域的进展令人鼓舞,在开发紧凑型高效导航系统和基于地图的导航技术方面取得了良好进展。通过使用光纤数据链路、研究最大化声学通信带宽和先进的数据压缩技术,正在解决通信能力的限制。然而,不利的水下信道将阻止高数据速率的声学信息传输。高容量、低成本的数据存储允许完成一些 UUV 任务而无需在线通信。实现 UUV 的强大自主控制的问题与 UUV 传感器技术的进步密切相关。最近的发展已经见证了智能导航、制导和控制系统以及智能在线任务规划系统的部署。然而,高能量密度电力系统的高成本限制了更先进的 UUV 系统概念的实现。
媒体转换卡 最简单的光通信形式是媒体转换器,它本质上是一个单通道多路复用器。该设备将一种电信号(例如以太网或 HD-SDI)转换为光信号,以便通过光纤传输,然后在另一端接收信号并将其转换回电格式。这种简单的转换可以实现非常低的延迟,通常为亚微秒,不包括大约 5 us/km 的固有电缆延迟。媒体转换器通常用于较高数据速率信号(> 10 Mbps),因为较低数据速率信号可以轻松地与同一光链路上的许多其他信号多路复用。媒体转换器的常见信号包括以太网(100 和 1000 Mbps)、HD/3G-SDI(1.485 和 2.97 Gbps)、用于声纳的同轴 ECL/PECL(30 - 150 Mbps)以及各种专有高速数据链路。这些卡无法使用扩展卡进行扩展,但可以使用光学多路复用器卡组合其光学通道。
北约第四航空大队 (AG IV) 负责北约社区侦察和监视系统的标准化和互操作性。随着机载侦察系统从传统胶片相机过渡到电子数字传感器,现有的北约标准化协议 (STANAGS) 不再定义实现互操作性所需的接口。第四航空大队进行了一项研究,以开发北约图像互操作性架构 (NIIA),该架构定义了实现参与国部队之间互操作性所需的关键电子和物理接口。该架构将机载元素和地面元素之间的接口确定为需要标准化的链接。为了满足这一要求,根据当时可用的技术制定了标准。该接口由 STANAG 7023 或 STANAG 4545 中定义的图像格式以及 STANAG 7085 定义的宽带数据链路或 STANAG 7024 定义的宽带数字磁带记录器组成。
航空电信网络 (ATN) 是一个全球互联网络,为自动化系统提供必要的数字通信,包括:空中交通服务通信 (ATSC)、航空运行控制 (AOC)、航空管理通信 (AAC) 和航空旅客通信 (APC)。ATN 由网络基础设施和应用程序组成,为地对地 (G/G) 和空对地 (A/G) 服务提供全球通信。ATN 网络的主要组成部分是路由器(中间系统:IS),包括 G/G 路由器和 A/G 路由器,以及通信子网络,包括空对地和地对地子网络。ATN 应用程序包括上下文管理 (CM)、控制器-飞行员数据链路通信 (CPDLC)、空中交通服务消息处理服务 (AMHS) 等。应用程序由终端系统 (ES) 托管。航空固定电信网络 (AFTN) 和信息交换系统正逐步被区域 ATN 地面网络和 AMHS 取代。本文件介绍了亚太地区的 AMHS 系统。
• 允许用户快速轻松地查看当前的 VOLMET 广播。• 自动处理从天气数据源收到的新天气数据(METAR/SPECI、TAF 和 SIGMET)。• 支持处理包含多个天气数据项的 WMO 标题的天气公报。• 对所有天气数据进行语义和句法验证,并提供手动输入/更正的工具。• 根据广播内容和时间表自动将正确的天气数据项组装成 VOLMET 消息。• 将文本消息转换为清晰自然的语音消息,可通过 HF/VHF 发射器广播或通过电话收听。• 允许手动录制部分或全部 VOLMET 广播。• 通过数据链路网络服务提供商 (ARINC/SITA) 将广播的文本副本 (D-VOLMET) 传输到配备 ACARS 的飞机。• 为系统事件(例如收到 SIGMET 或无效天气数据)生成视觉和声音警报。