– 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。
为了防止由于消息过载而导致 ARINC 网络中出现过度排队(见附录 A),空中和地面端系统都包含了流量控制软件功能。流量控制使用滑动窗口协议,以防止超过五条消息在之前的环回消息中排队,而这些消息尚未被对等设备回显。如果发生过载,并且没有收到回显,则将推迟传输新消息,直到收到消息或消息的相应有效计时器到期。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 埃及空间局 (EgSA)/埃及。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
摘要:CDL(通用数据链)是美国军方在机载平台上进行情报监视与侦察 (ISR) 的标准通信波形。为支持这一标准,军方拥有众多空中、海上和地面 CDL 系统用于战区连接。当前 CONOPS 缺少的是可以将其战术 ISR 数据直接带入战区的太空资产,以便进行响应式任务分配和收集。随着太空 CDL 设计的出现,我们可以将实时战术数据带入现有的战区地面站。将太空图像从直接任务中带入战区是一项壮举,即使是大型卫星也从未做到过。战区内卫星图像概念将在 2005 年底使用经过修改的机载合格 CDL 通信系统,通过小型卫星演示进行测试,实现 CDL 波形。太空合格 CDL 设计最大程度地利用了 L-3 机载设计,但 L-3 设计的几个方面必须针对太空应用和操作进行更改。零件选择本身就是我们设计方法的重要驱动因素。将最先进的高数据速率通信机载设计迁移到太空并非易事,因为批准的零件清单非常有限。L-3 还利用 CTX-886 空间发射器进行所有非基带设计部分。L-3 设计的成功与我们现有的机载设计相比,大大节省了功耗、重量和体积;功耗降低 58%,重量减少 45%,体积减少 73%。硬件的其他设计增强功能包括: • 无需软件控制即可运行 • 上行链路和下行链路的独立电源 • 由机载处理器或地面站控制 • 耐辐射组件 本文还将讨论性能、硬件和特性。
摘要 — 面向遥控飞机系统 (RPAS) 飞行员的管制员-飞行员数据链通信 (CPDLC) 接口是作为旨在测试 NtoM 作战概念 (ConOps) 的合成任务环境的一部分而实施的。该 ConOps 旨在支持非隔离空域中的多 RPAS 驾驶。考虑到长期实施,它假设未来广泛使用 CPDLC,充分利用其潜力,尝试减少与无人机相关的通信流延迟以及并发驾驶可能增加的任何额外延迟。该显示器的当前原型设计为快速直观,可由有人驾驶或无人驾驶飞机的飞行员和管制员单独使用,以练习和习惯 CPDLC 消息集、组成规则和程序。使用数据分发服务 (DDS) 标准开发,它允许为数据通信定义不同的服务质量 (QoS) 场景,可用于训练针对通信故障引起的问题而建立的程序。版权所有 © 2019 作者。由 Praise Worthy Prize S.r.l. 发布。本文根据 CC BY-NC-ND 许可证开放获取 ( http://creativecommons.org/licenses/by-nc-nd/3.0/ )。关键词:RPAS、CPDLC、UAS、数据链路
为了防止由于消息过载而导致 ARINC 网络中出现过度排队(见附录 A),空中和地面端系统都包含流量控制软件功能。流量控制使用滑动窗口协议,以防止超过五条消息在上一个环回消息中排队,而这些消息尚未被对等设备回显。如果出现过载,并且未收到回显,则将推迟传输新消息,直到收到消息或消息的相应有效性计时器到期。
• FANS A 和以前的 FANS A+ 版本的升级系列 • 第一个版本于 2004 年在 A330/A340 飞机上获得认证,随后在 A320 系列飞机和 A380 飞机上获得认证 • 最新版本于 2011 年获得认证 • 来自世界各地 FANS 运营的增强功能(在用体验)
为了防止由于消息过载而导致 ARINC 网络中出现过度排队(见附录 A),空中和地面端系统都包含流量控制软件功能。流量控制使用滑动窗口协议,以防止超过五条消息在上一个环回消息中排队,而这些消息尚未被对等设备回显。如果出现过载,并且未收到回显,则将推迟传输新消息,直到收到消息或消息的相应有效性计时器到期。
为了防止由于消息过载而导致 ARINC 网络中出现过度排队(见附录 A),空中和地面端系统都包含流量控制软件功能。流量控制使用滑动窗口协议,以防止超过五条消息在上一个环回消息中排队,而这些消息尚未被对等设备回显。如果出现过载,并且未收到回显,则将推迟传输新消息,直到收到消息或消息的相应有效性计时器到期。