在20.11.2024,根据艺术规定。27 para。(2)法律编号。132/2016关于国家诚信局(以下简称 - 法律编号。132/2016)和点1和5的ANI命令。 46 of 09.09.2024通过电子发行系统被随机分发,以验证,由卡胡尔地区检察官的检察官Viorica Marga夫人提交了2023年的财富和年度个人利益。 完整性检查员指出,根据Art。 27 para。 (1)和(2)法律编号。 132/2016,验证财富和个人利益声明的验证包括验证声明主体提交陈述的提交,验证遵守陈述形式的遵守情况以及验证违反法律制度的违反法律制度的宣布和个人利益的行为。 根据风险因素,腐败因素,宣言主题的脆弱性以及诚信委员会批准的标准,每年检查的财富和个人利益的陈述每年被随机确定。 由于诚信检查员对个人财富和利益的数据进行了反位,并由Viorica Marga主题指示的数据在2023年的财富和个人利益宣言中所指示的数据发现,该宣言在法律术语中提交的主题是在2023年11月2013年提交的宣言和个人利益的宣布和个人利益的主题。它。1和5的ANI命令。46 of 09.09.2024通过电子发行系统被随机分发,以验证,由卡胡尔地区检察官的检察官Viorica Marga夫人提交了2023年的财富和年度个人利益。完整性检查员指出,根据Art。27 para。(1)和(2)法律编号。132/2016,验证财富和个人利益声明的验证包括验证声明主体提交陈述的提交,验证遵守陈述形式的遵守情况以及验证违反法律制度的违反法律制度的宣布和个人利益的行为。根据风险因素,腐败因素,宣言主题的脆弱性以及诚信委员会批准的标准,每年检查的财富和个人利益的陈述每年被随机确定。由于诚信检查员对个人财富和利益的数据进行了反位,并由Viorica Marga主题指示的数据在2023年的财富和个人利益宣言中所指示的数据发现,该宣言在法律术语中提交的主题是在2023年11月2013年提交的宣言和个人利益的宣布和个人利益的主题。它。同时,在分析了在2023年宣布财富和个人利益中包含的数据之后,与通过访问的状态信息资源获得的信息佐证了,发现了差异
摘要:此演讲探讨了DeepSeek R1的数学基础,DeepSeek R1是一种专为复杂推理而设计的模型。与传统的监督精细调整不同,DeepSeek R1相对政策优化(GRPO)是一种新的方法,可以稳定近端政策优化(PPO),而没有批评家。GRPO通过将问题解决为顺序的步骤来增强思想链推理。我将分析其理论属性和对推理驱动的强化学习的影响。
2021 年 4 月 21 日,欧盟委员会提出了统一人工智能技术监管的草案。1 该草案做了三件事:在最高政治层面,它全面描绘了人工智能应用开发和部署的复杂性——从对稳定基础设施的需求、对非凡研究的需求到稳定的法律框架。草案还指出,欧洲需要确保在促进人工智能卓越发展方面的战略领导力。也许最有效的是:当前的人工智能夏季不仅是基础研究的另一个高潮,而且随着过去 20 年的技术进步,人工智能应用已经达到市场成熟度,并正在等待展现其影响。围绕新基础技术对经济、尤其是对社会的影响的辩论以重大公告和极大关注为特点。所有这些辩论的共同点是它们的理论性和大部分推测性。许多公司仍面临未解决的问题:
智能手机上的 ASW(反潜战)模拟器 Hyunhui Kim、Jemin Lee、Tesup Kim 和 Kangsun Lee* 明知大学计算机工程系 San 38-2 NamDong,龙仁,京畿道,449-728,韩国 以及 Kyu Cheol Cho、Sung Ho Jang、Tae Young Kim、JongSik Lee 仁荷大学计算机科学与工程学院 #253,YongHyun-Dong,南区,仁川,402-751,韩国 摘要 1 随着现代武器系统变得复杂和昂贵,在实际开发之前预测新武器系统的有效性的需求日益增加。在本文中,我们介绍了一个 ASW(反潜战)模拟器来衡量智能手机上 TAS(拖曳阵列声纳)的有效性。我们的模拟器由红蓝潜艇模型、环境模型(即海)和交战模型组成,以真实地模拟水下战争并据此衡量 TAS 的有效性。已经开发了 Web 服务来将模拟结果发送到智能手机客户端。根据我们进行的实验,在智能手机上模拟武器系统只消耗了有限的内存和电池。我们的工作表明,智能手机可以成为随时随地模拟武器系统的可行设备。关键词:国防建模与仿真、模型可重用性、建模形式主义、标准接口 1.简介 由于现代武器系统配备了高科技传感器和复杂控制器,因此开发成本也相应增加。然而,在现实生活中,期待新武器系统的有效性和投资回报率 (ROI) 几乎是不可能的。SBA(基于模拟的采购)[1] 旨在通过在实际开发和部署新武器系统之前提供其性能和有效性的测量来帮助决策者。随着 SBA 在新武器系统的采购过程中的普及,越来越多的人希望随时随地在各种手持设备上准备好有效性数据。* 通讯作者:所有通信应发送至 ksl@mju.ac.kr
电池是当前通往碳中性世界的路线图中必不可少的难题。随着飙升的生产,电池本身意外地成为社会的可持续性问题。因此,越来越多的注意力放在电池的生命周期中,需要进行第二次使用寿命和电池回收利用,依靠对电池状态的监视以及通过传感器对退休电池进行分类。解码基本物理/化学过程的电池传感器已准备好最大程度地提高电池的质量,可靠性,寿命和安全性,并最大程度地减少环境足迹。光纤传感器由于其微型尺寸,绝缘性质,电磁免疫力和多功能灵敏度而脱颖而出。从这个角度来看,我们讨论了对电池进行商业化智能感测的希望和挑战,并突出了光纤传感器如何与范式转移协同作用,包括细胞到包装和底盘技术。关键字:电池;聪明的感应;光纤传感器;传感器植入;智能电池
报告期利润分配预案经董事会审议通过:以股权登记日总股本为基数,扣除分配预案实施时已回购股份后,向全体股东每10股派发现金红利8.04元(含税),拟分配金额为7,471,472,992.22元(含税)。现金分配比例为公司本年度归属于母公司股东的净利润的45.02%。若本报告日至本次权益分派股权登记日期间公司总股本发生变动,则分配总额保持不变,每股分配比例相应调整。
摘要。任何组织实施信息系统规划的目的都是确保其战略目标与支持主要目标所需的信息之间的充分性。利用信息技术提供的优势发现创新公司流程的机会,强调技术与业务战略之间的联系,使用信息技术 (IT) 作为促进基础设施和业务流程转型的推动者。系统战略规划的成功在很大程度上取决于管理层的支持和参与、对业务目标和战略的理解、信息系统 (IS) 和 IT 管理的领导力和能力,以及执行计划的现实性和能力。
现代机器学习彻底改变了各种领域的问题解决,包括软件工程,科学发现和医学。随着语言,图像和多模式数据的基础模型的进步,最终用户可以完成复杂的任务,否则将需要大量的专业知识和资源。然而,尽管有这些显着的进步,但深度学习仍面临许多局限性。重要的是,它在需要结构,逻辑和计划的问题上挣扎 - 传统符号推理表现出色的地方。在他的2011年经典思维中快速慢,卡尼曼将人类的认知描述为与神经网络类似于神经网络的直观,关联的“系统1”与逻辑上的“系统2”之间的相互作用。将这两个范式的互补优势结合到统一系统中是人工智能的基本挑战。Neurosymbolic编程是一个有希望的新兴范式,旨在应对这一挑战。我的研究重点是神经符号编程的基础,即跨越正式的语义,语言设计和学习算法,以及其在涉及自然语言推理,计算机视觉和多模式整合的现实世界中的应用。为此,我追求了两个互补的研究方向:扇贝,通用神经成像节目的框架,发表在(Neurips 2021),(PLDI 2023),(PLDI 2023),(AAAI 2024)中,以及在基础中的基础和趋势(FNT 2024)的基础和趋势(FNT 2024)中的邀请专着和趋势;以及一系列逐渐高级的应用,以增强推理的复杂性并整合了越来越多样化的模式,这些方式发表在(ICML 2020),(ACL 2023)和(TR 2024)中。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。