摘要 近几年来,高分辨率固态传感器矩阵相机引起了摄影测量学家的极大兴趣。由于此类相机的分辨率有限,迄今为止,其实际应用仅限于数字近景摄影测量。尽管如此,直接获取和处理数字图像数据的优势,加上固态传感器的精确度潜力和不断提高的分辨率,已开始使数码相机在航空摄影测量的许多应用中引起人们的兴趣。本文介绍了两项实用研究,即利用直升机使用高分辨率数码静态摄像机进行数字空中三角测量以及自动生成数字高程模型和正射影像。试验区域是瑞士的一个高山村庄和一个山体滑坡区。本文介绍了固态矩阵传感器的当前性能和未来发展,并讨论了数码相机在航空应用中的优缺点。利用自校准技术,在使用 1:20,000 比例尺影像进行数字航空三角测量时,平面坐标外部验证精度为 2 厘米,高程坐标外部验证精度为 5 至 6 厘米,数字高程模型的飞行高度精度可达地面以上 0.03%。
近年来,人工智能技术不断取得显著进展,已广泛应用于社会的各个方面。特别是在图像处理领域,发展迅速的先进生成式人工智能技术已使人们能够轻松创建与真实照片具有相同细节水平的生成和处理图像。它已成为一种强大的工具,通过可视化难以拍摄或实际上不存在的事件来增强我们的理解和认识。在数码相机中,此类人工智能技术用于拍摄时的场景检测、图像识别和图像处理,不仅有助于提高图像质量,而且还可以在传统技术难以捕捉的情况下捕捉高质量的图像和视频。正如这些例子所示,人工智能技术在数码相机中的应用有望进一步扩大图像/视频在社会中应用的可能性。另一方面,生成式人工智能技术的进步使人们能够轻松且廉价地创建与数码相机拍摄的图像和视频无法区分的高清图像和视频,通过传播虚假图像和视频来诱导舆论已成为一个社会问题。此外,数码相机的 AI 图像处理可能会无意中记录与真实事件不同的图像和视频,这可能会根据图像和视频的预期用途造成问题。这些都是与数码相机拍摄的图像和视频的可信度相关的问题,也是相机制造商不能忽视的风险因素,他们一直致力于提高“捕捉真相”的能力。
电子传感器的快速发展无疑将导致数码相机取代胶片摄影测量相机。然而,至少在未来十年内,摄影测量界将同时使用模拟相机和数码相机。随着 ADS40(LH Systems 和德国航空航天中心 (DLR) 的联合项目)的问世,必须解决传感器校准问题。本文回顾了目前两个地点使用的校准设备。虽然 DLR 设备因其高度灵活性以及在开发阶段修改几何、辐射和光谱测量的可能性而受到青睐,但 LH Systems 设备针对工业需求进行了优化,尤其是通过快速和自动测量模式。
这些常用术语在演示文稿中使用,但可能未在程序或可用的参考文档中得到充分解释。本模块提供的补充材料详细讨论了使用的其他术语或首字母缩略词。CCD(电荷耦合器件)——用于捕捉数字图像的原始设备类型,可追溯到 20 世纪 60 年代。用于早期数码相机和许多其他成像设备。CCD 图像传感器是像素化的,可捕捉图像中的光线。传感器将光转换为电荷,然后将其传输到设备中将电荷转换为电压的组件。每个像素的电压都经过缓冲,并从芯片发送到位于相机中的印刷电路板。对于 CCD 技术,大多数功能都发生在相机的印刷电路板上,而不是成像设备上。CMOS(互补金属氧化物半导体)——与 CCD 一样,较新的 CMOS 设备是像素化的,可捕捉图像中的光线。电荷到电压的转换发生在每个像素中,大多数功能都在 CMOS 芯片内执行,而不是在外部印刷电路板上执行。CMOS 技术速度更快,执行其功能所需的功率更少。当今市场上许多较新的高分辨率数码相机都使用这种技术。ISO(国际标准组织)——数码相机成像设备的感光度的数字指示。ISO 速度越高,对光的敏感度越高。此数字与传统相机中使用的胶片的 ISO 等级相关。在数码摄影中,高 ISO 速度会导致图像中出现数字噪声。专业级和专业数码相机的典型 ISO 范围为 100 至 1600 或更高。
在这项研究中,开发了用于踩踏过程中定量动态拟合的实时评估系统。该系统由LED标记,连接到计算机的数码相机和标记检测程序。LED标记附着在矢状面上的臀部,膝盖,踝关节和第五元。PlayStation3 Eye被选为本文中的主要数码相机具有许多使用运动捕获的优点,例如高FPS(每秒帧)约180fps,320×240分辨率和易于使用的低成本。制造商检测程序是通过将LabView2010与Vision Builder一起使用的。该程序由三个部分组成:图像采集和处理,标记检测和关节角度计算以及输出部分。数码相机的映像是在95FPS中获取的,并且设置了程序以实时测量较低的接头角度,以将用户作为图形提供,并允许将其保存为测试文件。通过使用Holmes方法在每个马鞍高度下在每个马鞍高度处进行三个鞍高度(膝盖角:25、35、45 O)和三个节奏(30、60、90 rpm)的踩踏板验证系统,这是一种测量下肢角度的方法,以确定鞍高的高度。结果显示,系统的平均误差和强相关性,分别是1.18±0.44 o,0.99±0.01 o。由于马鞍高度的变化,几乎没有错误,但节制发生了绝对错误。考虑到平均误差约为1°,它是用于定量动态拟合评估的合适系统。在未来的研究中,必须使用两个具有额叶和矢状平面的数码相机来减少误差。
背景指南提供了实现机载相机系统度量校准的步骤,并规定了构建现场、交叉路口校准和测试范围。这些步骤基于胶片和数字航空相机系统的成功度量校准。为了准确校准相机系统,在数据收集飞行之前、期间和之后必须遵循几个步骤。这些指南最初仅限于矩形框架相机,而不是推扫式相机。校准飞行后应准备一份校准结果报告,包括校准参数及其精度。随着胶片相机被数码相机取代,这些新指南将对遥感界有所帮助。指南包括 Z/I DMC II 数码相机和 Z/I TOP 胶片相机的现场校准示例以及典型校准范围。这些示例包括航空系统校准现场方法的结果,包括总结分析和校准报告。总之,完成机载相机系统校准所需的步骤如下:
Applanix 牵头母公司 Trimble 从 ConAgra Foods Inc.(内布拉斯加州奥马哈)手中收购 Emerge Sensor Group(马萨诸塞州安多弗)的资产。此次交易包括该公司的知识产权和产品设计。此次交易是为了生产中画幅数码相机系统。
电压敏感元件可防止 ESD。出色的钳位能力、低泄漏和快速响应时间可为暴露于 ESD 的设计提供一流的保护。由于尺寸小巧,它适用于手机、MP3 播放器、数码相机和许多其他电路板空间非常宝贵的便携式应用。
摘要 在科学哲学中,人类被视为有思想的生物,通过人类哲学,他们可以对原本是农业经济体系转变为工业经济体系做出重大改变。这一变化发生在英国,并引发了工业革命。基于上述陈述,本文旨在解释理解科学哲学对于人类,尤其是真正的思想家的重要性,努力使科学哲学成为科学发展的基础和生命支撑,尤其是计算机视觉。它具有极高的速度、内存、容量和其他设施,被广泛应用于包括工业在内的各个领域,以处理危险、高精度和单调的工作。此外,由于技术发展和人类活动日益密集,对机动性要求高,汽车行业开发了自动驾驶汽车。为了支持这种自动驾驶汽车,与计算机视觉相关的研究课题是使用数码相机进行物体检测和测距。希望基于科学哲学进行使用数码相机进行测距研究,可以获得最佳结果。