A. 经济影响:设施建设和持续运营对就业、工资和资本投资的影响。考虑直接、间接和诱发影响。B. 财政影响:预计财产税、所得税、费用和系统开发费用对地方、州和联邦收入的影响。C. 溢出影响:本报告讨论了其他潜在的定性收益和成本。拟议开发的初步细节可能会在规划和开发过程中发生变化。虽然结果以精确的数字呈现,但实现的结果可能会略有不同。因此,本分析中提出的预测旨在根据本分析完成时可用的最佳和最合理假设,提供该设施在此位置建设和运营可能产生的经济影响的数量级估计。II. 执行摘要
摘要 — 在净能源计量电价下,为产消者考虑了电表后分布式能源的共同优化。考虑的分布式能源包括可再生能源发电、灵活需求和电池储能系统。能源管理系统通过求解最大化预期运行盈余的随机动态规划,基于本地可用的随机可再生能源共同优化消耗和电池存储。为了避免动态规划解决方案的指数复杂性,我们提出了一种基于约束随机动态规划松弛投影方法的闭式线性计算复杂度共同优化算法。获得了所提解决方案的优化充分条件。数值研究表明,计算成本降低了几个数量级,优化差距显著缩小。
SHAPE 软件可以量化化学 3D 结构与理想几何结构或用户选定结构的偏差。7 在我们的案例中,我们用它来比较文献中先前描述的含 LBT 肽的形状(见表 S1)。SHAPE 软件确定一个连续形状参数 (SP),该参数的数学定义与系统大小无关。根据定义,当金属位点(问题结构,P)的实际坐标恰好显示出所需的理想形状时,SP 的结果值为零,并且随着结构的扭曲程度而增加。低于 0.1 的值表示结构中化学上无关紧要的扭曲。大于 3 的值表示重要的扭曲,通常遇到的最高值在 40 的数量级。
近十年来,基于人工脉冲神经网络的神经形态架构兴起,例如 SpiNNaker、TrueNorth 和 Loihi 系统。这些架构中的大规模并行性以及计算和内存的共置可能使能耗比传统的冯·诺依曼架构低几个数量级。然而,到目前为止,由于缺乏正式的机器模型和神经形态计算的计算复杂性理论,因此无法将其与更传统的计算架构进行比较(特别是在能耗方面)。在本文中,我们迈出了建立这种理论的第一步。我们引入脉冲神经网络作为机器模型,与我们所熟悉的图灵机不同,信息及其操作共置在机器中。我们引入了典型问题,定义了复杂性类的层次结构,并提供了一些初步的完整性结果。
尽管化石燃料发电的可能功率密度范围很广,但我们只需要对功率密度进行数量级估计即可进行讨论。此外,功率密度最低的资源往往不经济,因此范围会稍微缩小。总的来说,美国化石燃料电力系统的功率密度为每平方米不到 200 到近 1,000 瓦 (W) (W/m 2 )。8 如果没有背景信息,这个数字毫无意义。美国家庭平均每年使用 10,400 千瓦时 (kWh) 的电力,相当于平均 1,190 W 的电能。9 考虑到电力需求不是恒定的,我们假设一个普通家庭需要有 2,500 W 的发电能力才能持续开灯。这相当于大约 2.5 到 12.5 平方米的受干扰区域,或 27 到 135
签名和验证过程。我们为 SPHINCS+ 提出了一种适应性并行化策略,分析其签名和验证过程以确定高效并行执行的关键部分。利用 CUDA,我们执行自下而上的优化,重点关注内存访问模式和超树计算,以提高 GPU 资源利用率。这些努力与内核融合技术相结合,显著提高了吞吐量和整体性能。大量实验表明,我们优化的 SPHINCS+ CUDA 实现具有卓越的性能。具体而言,与最先进的基于 GPU 的解决方案相比,我们的 GRASP 方案可将吞吐量提高 1.37 倍到 3.45 倍,并比 NIST 参考实现高出三个数量级以上,凸显了显著的性能优势。
奥卡马克是目前最有前途的商业化聚变反应堆配置,但与仿星器相反,它们很容易发生中断。由于它们也是非常复杂的设备,因此中断取决于许多影响以及它们之间的非线性相互作用。脉冲托卡马克实验包括数百万安培数量级的电流放电。这些放电的正常演变可能会被各种类型的不稳定性 1 突然打断。与过度辐射(从可见光到 X 射线光谱区域)、过高的等离子体密度或异常电流分布有关的不稳定性尤为常见和危险。中断发生在两个阶段,即热猝灭和电流猝灭。在热猝灭期间,等离子体的大部分内部能量会在 1 毫秒数量级的时间尺度上损失。热猝灭之后立即是电流猝灭,在此期间等离子体电流会在几毫秒到几百毫秒的时间间隔内熄灭,在当今的托卡马克中这一点尤为明显。中断的前兆通常表现为几个诊断信号异常,例如电子温度异常(图1)。然而,这些所谓的前兆信号也可能出现在非中断等离子体中,这使得中断预测成为一个复杂的多目标问题。由于缓解中断需要立即终止放电,因此误报会浪费大量的资源,而且有损坏设备的风险。因此,需要将误报和漏报保持在最低限度。准确预测中断对于下一代托卡马克来说将更加重要,因为它们将使用面向等离子体的金属部件。金属有几个优点。首先,它可以承受负载且腐蚀程度可接受,这意味着它对面向等离子体的部件的寿命以及托卡马克的效率的影响较小。其次,等离子体燃料的滞留率相对较低。滞留率高,即放射性燃料在壁内积聚,是一种安全威胁
可交换电池已被部署在码头无共享的电子示波器的多个服务中。本文在生产共享电子驾驶员服务(S3)的生产中提供了可交换电池的经济理论。明确建模的是通过“榨汁之旅”交换电池的操作,以及电池的佩戴定律,具体取决于触发下一次交换的排放深度(DOD)。在生产模型中,每日补充数量和每次换用成本是关键变量,因为它们将现场实施链接,并且交换物流功能与电池库存,踏板车库存,能源充电,机队维护和商业的其他生产功能。因此,与电池和踏板车的各自库存政策的总体“补充策略”相互作用。通过优化(i)交换旅行,(ii)目标DOD,(iii)电池能量容量(BEC),(iv)踏板车在寿命和能量消耗率方面,(iii)电池能量容量(ii),在四个阶段中进行了数学优化,以四个阶段解决。 特征方程是为最佳的每回收成本,DOD,BEC,踏板车寿命和能耗率而建立的。 指定了针对电池佩戴法律,电池价格和踏板车价格的两组规格,即恒定的弹性和仿射线性:在任何一个设置下,该模型都允许分析解决方案。 在一项数值研究中,表明每单位馈电能源的S3成本比网格外电价大的数量级。在四个阶段中进行了数学优化,以四个阶段解决。特征方程是为最佳的每回收成本,DOD,BEC,踏板车寿命和能耗率而建立的。指定了针对电池佩戴法律,电池价格和踏板车价格的两组规格,即恒定的弹性和仿射线性:在任何一个设置下,该模型都允许分析解决方案。在一项数值研究中,表明每单位馈电能源的S3成本比网格外电价大的数量级。
根据《量子计算网络安全防范法案》(“该法案”),6 USC § 1526,管理和预算办公室 (OMB) 需要向国会提交一份报告,概述将联邦信息系统 1 迁移到后量子密码学 (PQC) 的战略的关键组成部分。本报告满足此要求,由三部分组成。首先,它概述了联邦政府为应对联邦信息系统中当前使用的密码系统未来可能容易受到密码分析相关量子计算机 (CRQC) 的攻击而采取的战略。其次,它对机构停止使用易受量子攻击的密码学可能需要的资金进行了粗略的数量级估计。最后,该报告详细介绍了由国家标准与技术研究所 (NIST) 牵头的联邦机构为制定 PQC 标准所做的努力。
颠覆者技术推动海上优势。今天,我们正处于一个转折点,人工智能 (AI)、量子和生物技术等技术有可能对我们的技术优势产生不成比例的影响。我们必须刻意学习、开发、实验和部署。人工智能带来的作战能力已经对海战产生了广泛的影响。虽然战争本质上是人类的努力,但人工智能通过比人类思维快几个数量级的评估和决策,打击了人类为战争带来的优势和关键方面。海军科技必须为实现人工智能的基础科学做出贡献。然而,更重要的是,我们需要将人工智能作为一种工具应用于多个学科和海军科技挑战,从战斗管理辅助到人工智能设计的材料、有保障的网络,以及我们的智慧和人工智能将带我们去的任何地方。